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1. Introduction 

 

The Gini index (Gini, 1914) is the most famous and widely used inequality 

measure. It is an important measure for forecasting the wealth of a country and is 

available for almost every country in the world from various international 

organizations’ datasets (Decancq and Lugo, 2012).  

Its importance has been immediately made clear. Since its first proposal, the Gini 

index has been the subject of numerous publications, both theoretical and 

applicative. Some of the reasons for its success and longevity are simplicity, 

fulfilment of general properties, interesting interpretations, useful decomposition, 

links with the Lorenz curve (Lorenz, 1905) and the mean difference (Gini, 1912) 

(see Giorgi, 1990, 1992, 1993, 1999, 2005, 2011a; Giorgi and Gubbiotti, 2017 for 

more details). Moreover, its use is not only restricted to economics and, every year, 

many applications in different and unthinkable fields continue to pop up (Giorgi, 

2019). The present paper aims to retrace some lines of research related to the Gini 

index, pointing out the most important results and the reference works, as well as 

some errors several times published and re-published in the immense literature on 

the Gini index.  

The paper is organized as follows. In Section 2, the definition of the Gini index 

is recalled. In Section 3, some aspects related to its origin are clarified. In Section 4, 

the Gini index decomposition is tackled, while its inferential aspects are treated in 

Section 5. Finally, in Section 6, brief conclusions are outlined. 
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2. The Gini index 

The Gini index is a measure of the degree of inequality in the distribution of a 

non-negative variable 𝑋, most of the time income1. It is defined between 0 and 1. 

Where 0 marks equidistribution (or minimum concentration) of income, that is when 

all the recipients earn the same amount of income. Instead, it is equal to 1 when all 

the individuals except one have 0 income, while one earns the total amount of the 

income. In this case, we refer to maximum concentration. There are several 

equivalent ways of writing the Gini index2. Some of these, which will be useful in 

the following of the paper, are: 

𝑅 =
2 ∑ 𝑥𝑖(𝑖 − 1)𝑁

𝑖=1

(𝑁 − 1) 𝑡𝑋
− 1 =      (1) 

𝑅 =
2 ∑ 𝑖 𝑥𝑖

𝑁
𝑖=1

(𝑁 − 1) 𝑡𝑋
−

𝑁 + 1

𝑁 − 1
                                  (2) 

where 𝑁 is the population size, 𝑥𝑖 is the income earned by the 𝑖-th recipient which 

occupies the 𝑖-th position in the ranking of incomes arranged in a non-decreasing 

way, and 𝑡𝑋 = ∑ 𝑥𝑖
𝑁
𝑖=1  is the total income in the whole population. 

Another expression for 𝑅, equivalent to (1) and (2), has been derived as a function 

of the covariance, 𝑐𝑜𝑣(), by De Vergottini (1950) and Piesch (1975)3: 

𝑅 = 𝑐𝑜𝑣 (
𝑖

𝑁
,
𝑥𝑖

𝑁
) . (3) 

Furthermore, the Gini index can be obtained also through the Lorenz diagram 

(Gini, 1914). In particular, 𝑅 is twice the area between the Lorenz curve and the 

egalitarian line (for more details see Nygård and Sandström, 1981). 

 

3. The origin of the Gini index 

Despite the fame of the Gini index, sometimes there is still confusion about the 

year of its first appearance in literature. It is not uncommon to find papers that place 

it in 1912. But indeed, Corrado Gini (1884-1965) proposed 𝑅 in 1914 (Gini, 1914) 

as the final result of a series of studies on the measurement of the concentration of 

wealth and income he started in the early twentieth century. 

                                                      
1 Besides income, the Gini index can be computed also on other variables, such as wealth, expenditure, 

revenue, etc. However, for the sake of comodity, in the following, we will assume that it is applied to 

the income.  
2 See Yitzhaki (1998) for the continuous case, Giorgi and Gigliarano (2017) for the discrete case and 

Giorgi (1992) for a more general discussion. 
3 The corresponding expression in the continuous case has been proposed by Lerman and Yitzhaki 

(1984). 
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The main reason for this mistake is that in his 1914 paper, Gini showed, as a 

corollary, that 𝑅 can be written also as a function of the mean difference, Δ, 

introduced by himself in 1912. Then, several scholars wrongly thought that 𝑅 and Δ 

were the same index, so they started to quote the paper of 1912 as a reference for the 

Gini index. In reality, 𝑅 and 𝛥 are different measures with different aims useful in 

different contexts. The former is a concentration measure, while the latter is a 

variability measure. Of course, the two concepts although related are different. 

Furthermore, to complicate matters even more and to contribute to the 

propagating of the mistake in literature it is the fact that both the papers (Gini1912, 

1914) – as well as most of the literature produced by the Italian school of statistics 

in those years – were written in Italian, so not easily understandable by non-Italian 

speakers and, moreover, not even easily available. However, after a careful reading 

of the two papers, it looks clear that the Gini index had been unequivocally proposed 

for the first time in 1914. Furthermore, any possibility of doubt about this issue is 

eliminated by Gini himself who stated “… in 1914 I proposed the concentration ratio 

showing contemporarily the relations between this index and the Lorenz curve and 

the mean difference” (Gini, 1931 p. 305). Moreover, from the quotation, it is curious 

to notice that Gini refers to 𝑅 as the concentration ratio. The other names by which 

the index is actually known in  literature, that explicitly refer to the namesake author, 

such as Gini index, Gini ratio and Gini coefficient, have only been used  later and by 

Italian scholars to pay homage to Corrado Gini. 

 

4. The Gini index decomposition 

The decomposition is a common and recurring practice in the study of inequality 

measures. According to the structure of the data and the research objectives, it is 

mainly possible to distinguish decomposition by sources and by population 

subgroups (for a comprehensive survey on the subject see, e.g., Giorgi 2011b).  

The general aim is to determine how much of the inequality is due to each income 

source or population subgroup. Then, the results of the decomposition are very useful 

to better understand the inequality and bring out where it lurks. 

 

4.1. Decomposition by sources 

When data enables us to decompose the total income by different income sources 

(for instance, wages, salaries, capital incomes, etc.), it is possible to decompose 

inequality measures and, of course, the Gini index by the contribution of each income 

source to the inequality. 

The Gini index is additively decomposable by income sources, that is, the overall 

inequality can be broken up into the contribution of each income source (Rao, 1969): 
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𝑅 = ∑ 𝐹𝑗

𝑘

𝑗=1

= ∑ 𝑞𝑗𝑅𝑗

𝑘

𝑗=1

𝐸𝑗.   

The contribution of each income source (𝑗 = 1, … , 𝑘), 𝐹𝑗, is given by the product of 

three factors:  

- 𝑞𝑗, the ratio between the mean income of the source 𝑗 and the population mean; 

- 𝑅𝑗, the Gini index computed only on the incomes of the source 𝑗; 

- 𝐸𝑗 (−1 ≤ 𝐸𝑗 ≤ 1), the ratio between the inequality index calculated with (3) 

for the source 𝑗 in accordance with the ranking established on the basis of the 

total income and the Gini index calculated for the source 𝑗 in accordance with its 

own internal ranking, 𝑅𝑗. It is equal to 1 only when the ranking within source 𝑗 

coincides with the total income one. 𝐸𝑗 plays a crucial role and occurs in several 

studies on the decomposition by income sources of the Gini index. It provides a 

measure of the “disequalizing effect” induced by the source 𝑗 in the income 

distribution. It has been independently obtained by several scholars, such as 

Fields (1979a, 1979b) that proposed the Factor Inequality Weights (FIW) and 

named it “relative coefficient of variation” and by Lerman and Yitzhaki (1985) 

and Schechtman and Yitzhaki (1987) who named it “Gini correlation”. 

Furthermore, since 𝑞𝑗 and 𝑅𝑗 are not negative, 𝐸𝑗 provides the sign of the 

contribution of the source 𝑗. When it is negative, the source 𝑗 reduces the total 

inequality. On the contrary, when it is positive it contributes to increase the total 

inequality. 

 

4.2. Decomposition by sub-population 

When income data are gathered together with individuals characteristics such as 

age, sex, level of education, geographical area, etc., it is possible to explore the 

contribution of each population subgroup – identified by these features – to total 

inequality (see for more details, Deutsch and Silber 1999; Mussard et al. 2006). 

Bhattacharya and Mahalanobis (1967) were the first to try decomposing 𝑅 by 

population subgroups. They attempted to decompose the Gini index as in the 

ANalysis Of VAriance (ANOVA), that is, into the sum of within (𝑤) and between 

(𝑏) components. However, they discovered that 𝑅 cannot be additively decomposed 

in this way. This overshadowed the Gini index with respect to other indices that 

instead are additively decomposable in terms of the analysis of variance, such as the 

Theil index and the entropy index, at least till Mehran (1975) showed that 𝑅 can also 

be decomposed additively. In order to do so, it is necessary to take into account the 

within component (𝑤) and the across component (𝑎) defined as 𝑎 = 𝑏 + 𝑖, where 𝑖 
is the interaction, 
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𝑅 = 𝑤 + 𝑏 + 𝑖.  

The interaction component is “a measure of the extent of income domination of 

one group over the other apart from the differences between their mean incomes” 

(Mehran, 1975, p.148). 

From that moment on, different methods for additively decomposing the Gini 

index have been proposed. Frick et al. (2006) exploiting the results by Mehran 

(1975) and by Yitzhaki (1994), proposed the ANalysis Of the Gini Index (ANOGI). 

according to which the Gini index is decomposed by between (𝑏), within (𝑤), 

overlapping between (𝑜𝑏) and overlapping within (𝑜𝑤) components: 

𝑅 = 𝑤 + 𝑜𝑤 + 𝑏 + 𝑜𝑏  

The two additional elements, 𝑜𝑤 and 𝑜𝑏4, are functions of the overlapping, a 

measure and a concept introduced in the literature on the Gini index by Yitzhaki and 

Lerman (1991). The overlapping represents the extent by which one subgroup is 

overlapped by the other. When there is no overlapping, a population is stratified, that 

is, there is a kind of “segregation” between the subgroups with respect to the income 

distribution. Therefore, this measure has very important and practical economic 

implications. In fact, a stratified society, in which the membership of a group 

automatically precludes certain incomes to its members, can bear less inequality and 

takes more the risk of instability. Stratification is both the cause and the consequence 

of inequality. Furthermore, this type of information cannot be captured by the 

inequality measures that are additively decomposable. In the end, what initially 

looked like a drawback for the Gini index is one of its strengths. However, to be 

precise and exhaustive, the concept of overlapping is close to the concept of 

“transvariation” already grasped by Gini (1916) (see also Pittau and Zelli, 2017). 

It is possible to obtain an interesting decomposition of the Gini index also 

applying the concept of Shapley value in cooperative game theory (Shapley, 1953). 

The Shapley value provides the marginal impacts of some components, suitably 

chosen, which play in determining a profit function. Deutsch and Silber (2007) in 

their work put down the Gini index as the profit function and consider the 

components within (𝑤), between (𝑏), ranking (𝑟) and the relative size in each 

population subgroup (𝑛) (see also Shorrocks, 1999). So, they additively decompose 

𝑅 as: 

𝑅 = 𝑤 + 𝑏 + 𝑟 + 𝑛.  

Finally, another interesting result, that goes by the name of Balance Of Inequality 

(𝐵𝑂𝐼) decomposition, has been proposed by Di Maio and Landoni (2015). The 

                                                      
4 In general, 𝑜𝑏 is negative because the overlapping reduces the differences between subgroups. 
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interest in this work is twofold. First, they demonstrate that 𝑅 in (2) coincides with 

the normalized barycenter of the income distribution, the 𝐵𝑂𝐼. This provides, if 

additional proof were needed, the extraordinariness of the Gini index which also has 

a physical interpretation. Then, they propose a decomposition that, besides the 

components within (𝑤) and between (𝑏), consider the asymmetry (𝑎𝑠𝑦𝑚) and 

irregularity5 (𝑖𝑟𝑟). Therefore, 

𝑅 = 𝐵𝑂𝐼 = 𝑤 + 𝑏 + 𝑎𝑠𝑦𝑚 + 𝑖𝑟𝑟.  
 

5. Inference 

The study of the sampling properties of the Gini index is a very interesting and 

prolific research field that has remained uncharted for a long period, at least by 

Italian statisticians. In fact, Gini was very critical of statistical inference and the 

attitude of such recognized authority like him, who had a great impact on the Italian 

school of statistics, which for many years neglected almost completely this topic and, 

therefore, the study of the inferential aspects of the Gini index (Piccinato, 2011). 

Then, the first attempts of studying the sampling properties of 𝑅 were by non-Italian 

scholars. Furthermore, inference on the Gini index is a tricky problem and this 

generated a large number of publications and a large number of mistakes, often even 

re-published in the literature. For the sake of brevity, parametric inference and finite 

population inference are here considered. 

 

5.1. Parametric inference 

Parametric inference aims to express the Gini index as a function of parameters 

in theoretical distributions. This is useful for facing inferential problems but also the 

problem of missing data, especially at the top of the distribution, and, then, for 

imputing the data and improving the estimates. 

The expression of the Gini index has been already determined under several 

continuous theoretical distributions, such as Pareto (Michetti and Dall’Aglio, 1957; 

Girone, 1968), exponential (Cicchitelli 1968), lognormal (Langel and Tillé, 2012). 

Giorgi and Nadarajah (2010), in a very extensive work, determined the expression 

of 𝑅 under thirty-five continuous distributions. 

Under discrete distributions, Conti and Giorgi (2001) suggested using a kernel 

estimation for filling the gap between observations. They proposed a two steps 

procedure: in the first step, the unknown population distribution is estimated via a 

kernel method; in the second step, the kernel estimate of the density is used to 

produce an estimate of the Gini index. 

                                                      
5 The income distribution is regular if the distance between two adjacent recipients in the population or 

in the subgroup is constant. 
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5.2. Finite population inference 

Finite population inference deals with the sample surveys commonly carried out 

for collecting income data on which the Gini index is usually computed.  

The Gini index is a non-linear statistic, since it is based on rank statistics, 

therefore its variance is not straightforward, especially under complex sampling 

designs. Three main lines of research can be distinguished in the finite population 

framework: (i) asymptotic theory, (ii) linearization methods, (iii) resampling 

methods. 

In the asymptotic theory, the properties of an estimator are studied for 𝑛 that 

going to infinity. The first attempt of studying the inferential properties of the Gini 

index is framed within this framework and traced back to Hoeffding (1948). There 

were also prior attempts in the same framework, but they had focused on the 

numerator of the Gini index, the mean difference (such as Nair, 1936). Instead, 

Hoeffding showed, as part of an application of his general results, that the Gini index 

is a ratio of two U-statistics and that under certain conditions, it is asymptotically 

normal. The same result has been obtained with different procedures by other 

scholars (see Giorgi and Gigliarano 2017 for further details). 

Linearization methods include a range of techniques (such as Taylor series 

expansions, estimating equations, influence function, indicator variables). The basic 

idea of these techniques is to approximate the variance of a non-linear statistic, like 

𝑅, through the variance of the total of a linear function of the observations, i.e., a 

linearized variable. All the linearization techniques have been applied to the Gini 

index, but with mixed success (see Langel and Tillé, 2013). The method, currently 

used by Eurostat in the estimation procedure for computing the sampling error of the 

Gini index on Eu-Silc6 income data, has been developed by Osier (2009). This 

method uses the influence function, already known in the field of robust statistics, as 

artificial variables for approximating the variance of non-linear statistics (Deville, 

1999) and, therefore, also of the Gini index. However, the linearized expression of 

𝑅 obtained with the influence function and used by Osier (2009) was not new and 

was initially determined by Monti (1991). Vallée and Tillé (2019), used the method 

proposed by Graf (2011) based on the Taylor series expansion with respect to 

indicator variables, for dealing with the cases in which the Gini index is computed 

in the presence of non-response and re-weighting procedures, such as calibration. 

Also, resampling methods have been applied in the last fifty years for estimating the 

variances of the Gini index. Manfredi (1974) was the first to use the jackknife 

method followed by, among others, Yithzaki (1991) who proposes an estimator 

                                                      
6 European Union Survey on Income and Living Conditions. For further details, please see the material 

on this link <https://ec.europa.eu/eurostat/web/microdata/european-union-statistics-on-income-and-

living-conditions>. 
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based on the influence function. Moreover, Dixon et al. (1987) were the first to use 

bootstrap. Most recently, Antal and Tillé (2011) derive a time-efficient bootstrap 

method useful under classical sampling designs. 

 

6. Conclusions 

The Gini index is the most famous and widely used inequality measure. Since its 

first proposal, it has been subject of numerous publications. Nowadays, after more 

than one century, it is still a matter of great interest. Hence, it is important to keep 

track of the oceanic quantity of papers already written and, moreover, be able to 

navigate among them.The present paper represents an attempt to clarify and resume 

some aspects related to the origin, the decomposition and the inferential aspects of 

the Gini index. Of course, the topics and the literature covered represent only the tip 

of the iceberg. Several interesting topics have been overlooked just for reasons of 

space. Anyway, this paper hopefully could be a useful starting point for scholars 

approaching this topic. 
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SUMMARY 

The present paper retraces a few of the main lines of research related to the Gini index, 

pointing out the most important results and the reference works, as well as some errors, 

several times published and re-published in the literature. It can be seen as a short 

compendium, based on the works, teachings and discussions of Prof. Giovanni Maria Giorgi.  
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