
Rivista Italiana di Economia Demografia e Statistica     Volume LXXVIII n.1 Gennaio-Marzo 2024 

 FURTHER DEVELOPMENTS ON THE POWER OF THE 

DOUBLE FREQUENCY DICKEY FULLER TEST ON UNIT ROOTS  

 

Margherita Gerolimetto, Stefano Magrini 

 

 

 

 

Abstract. In this paper we present some further investigations on the power of the 

Double Frequency Dickey Fuller test for unit root, recently proposed in literature to 

capture those situations where the time series might be affected by potential 

unknown structural breaks, asymmetrically located.    

The use of Fourier function to approximate structural breaks has recently received 

large attention in unit root literature. The idea is that the Fourier approach allows 

capturing the behavior of a deterministic function form even if it is not periodic, 

working better than dummy variables, independent of the breaks are instantaneous 

or smooth and avoiding the problem of selecting the dates and the form of the breaks. 

The first attempts focused on the adoption of single frequency trig functions. More 

recently, it has been proposed an approach based on a double frequency in trig 

functions, which is more likely to capture also breaks that are asymmetrically 

located. Of this so-called Double Frequency Dickey Fuller test, it has been developed 

the asymptotic theory and, via simulations, its finite sample properties have been 

shown with respect to a variety of processes. To the best of our knowledge, however, 

no results have been presented with respect to the power of the Double Frequency 

Dickey Fuller test in case of occasional breaks data generating processes. 

To address this issue we intend to conduct an extensive Monte Carlo experiment, 

concentrated on some occasional break data generating processes such as Mean Plus 

Noise and Markov Switching to evaluate the power of the test to distinguish also 

among this type of behavior.  

 

 

1. Introduction 

 

One of the most studied topics in the applied unit root time series literature is  

whether macroeconomic time series, in particular those considered by Nelson and 

Plosser (1982) are random walks or stationary processes around a level or a trend. 

The issue of stochastic versus deterministic trend has important practical policy 

implications. Until the empirical work of Nelson and Plosser (1982), the general 

view was that macroeconomic time series were stationary around a deterministic 
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trend or level (Blanchard, 1981; Barro, 1976). However, after the introduction of 

Dickey and Fuller's tests for unit root (Dickey and Fuller, 1979, 1981), herafter DF 

and ADF, Nelson and Plosser (1982) find that with one exception, all historical time 

series have a unit root. This finding supports the real business cycle hypothesis and 

goes against the deterministic approach which separates business cycles from trend 

growth. 

The paper by Nelson and Plosser (1982) started a long debate, with subsequent 

research. Phillips and Perron (1988) depart from the standard DF test assumptions 

of iid errors and developed a new test (PP test) that is robust to heterogeneity and 

serial correlation in the errors that has the same limiting distribution as ADF. From 

a different perspective, Sargan and Bhargava (1983) and Bhargava (1986) suggest 

tests in the Durbin Watson framework. Following Bhargava (1986), Schmidt and 

Phillips (1992) proposed a LM (Lagrange Multiplier) test whose power is argued to 

be larger than DF tests. Kwaitowski et al. (1992) proposed a stationarity test based 

on Lagrange Multiplier principle to a general error process similar to PP-type test. 

Leybourne and McCabe (1994) modify the KPSS test to form a stationarity test in 

the DF-type framework. Another line of research approaches the issue from a 

Bayesian perspective. In this regard it appears that the results concerning the 

stationarity of NP data differ with the choice of the prior.  

However, as Perron (1989) pointed out, all these tests can be misleading if one 

does not account for the possibility of structural breaks in the time trend or level. His 

seminal paper opened an area of research to develop unit root tests that are robust to 

structural breaks or outliers in the data. This poses a serious problem for applied 

economists since the number duration and form of structural breaks may not be 

known. Moreover, detecting the number or the locations of the breaks may in turn 

cause an unknown pre-testing bias. A complicating factor can be also that a break 

occurring in a given year sometimes does not display its full impact immediately.  

The first studies (Perron, 1989; Zivot and Andrews, 2002; Lee and Strazicich, 

2003) use dummies to mimic structural breaks in the series. The drawback of this 

approach is that it generates too many nuisance parameters. This argument stimulate 

towards a different set of unit root and stationarity tests. Becker et al. (2006) develop 

tests which model any structural break of unknown form as a smooth process by 

means of the Fourier transforms. Several authors, starting from Gallant (1981), show 

that a Fourier approximation can often capture the behaviour of an unknown 

function, even if the function itself is not periodic. This testing framework requires 

only the specification of the proper frequency in the estimating equations thus 

reducing the number of estimated parameters. This ensures that, compared to 

dummy-based approaches, the tests have good size and power independently of the 

time or shape of the break. In this vein, there are recent proposals that generalize the 

original ideas of Becker et al. (2006), among which Enders and Lee (2012) who 
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adopt the Fourier transform in a set-up where it is avoided the problem of selecting 

the dates, number, and form of breaks. 

Omay (2015) proposes a test that combines the methodologies of Becker et al. 

(2006) and Enders and Lee (2012) and considers the use of fractional frequency to 

improve the fitting. Cai and Omay (2022) propose a double Fourier frequency test 

that is able to capture breaks that are asymmetrically located. 

For all these tests, the literature propose simulation studies to ascertain the size 

and power properties in finite samples. Most studies (among others, Enders and Lee, 

2012; Cai and Omay, 2022) logistic smooth transition autoregressive (LSTAR) 

processes or exponential smooth transition autoregressive (ESTAR). To the best of 

our knowledge, none of them considers the case when the time series is generated 

by occasional break processes such as the Mean Plus Noise (Chen and Tiao, 1990; 

Engle and Smith, 1999) and Markov Switching (Hamilton, 1989) models that can 

exhibit a dependence pattern that be difficult to distinguish from a unit root one.  

The research question is then to find out whether the Double Frequency Dickey-

Fuller based tests have power versus occasional break data generating processes. The 

structure of the paper is as follows. In the second section, we will present the Double 

Frequency Dickey Fuller test. In the third section, we focus on occasional break 

processes. In the fourth section, we will present our Monte Carlo experiment and 

some conclusions. 

 

 

2. Double Frequency Dickey Fuller Test 

 

The modification of the DF test to account for a deterministic function 𝑑𝑡 moves 

from the following AR(1) process with a deterministic trend 

 𝑦𝑡 = 𝑑𝑡 + 𝜃𝑦𝑡−1 + 𝜀𝑡                        𝑡 = 1, … , 𝑇                                                 (1) 

where the stationary term 𝜀𝑡 has variance 𝜎2, 𝑑𝑡 is a deterministic function. If  𝑑𝑡 

is known, model (1) can be directly estimated and, in turn, the unit root hypothesis 

𝐻0: 𝜃 = 1 can be tested. When 𝑑𝑡 is unknown testing for unit root is problematic 

given the risk of misspecification of 𝑑𝑡. The idea underlying the DF test based on 

Fourier expansion is that it is often possible to approximate 𝑑𝑡 using the Fourier 

expansions, as in Enders and Lee (2012): 

𝑑𝑡 = 𝛼0 + ∑ 𝛼𝑘 (
2𝜋𝑘𝑡

𝑇
)𝑛

𝑘=1 + ∑ 𝛽𝑘 (
2𝜋𝑘𝑡

𝑇
)𝑛

𝑘=1              𝑛 ≤ 𝑇/2                          (2) 

where 𝑛 represents the number of cumulative frequencies included in the 

approximations and 𝑘 represents a particular frequency. It is interesting to observe 
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that in the absence of a nonlinear trend, all values 𝛼𝑘 = 𝛽𝑘 = 0, so that the usual 

Dickey Fuller specification appears. Usually the number of frequencies 𝑛 should be 

kept small to avoid overfitting; in particular, in the original idea of Enders and Lee 

(2012), the Fourier approximation is adopted for a single frequency (𝑛=1) as follows 

 𝑑𝑡 = ∑ 𝑐𝑖𝑡𝑖1
𝑖=0 + 𝛼 sin (

2𝜋𝑘𝑡

𝑇
) + 𝛽 cos (

2𝜋𝑘𝑡

𝑇
)                                                    (3) 

that includes, via the first term in the sum where 𝑖 = 0,1, both the intercept and 

the trend plus intercept versions and it also approximates, via the sinusoidal waves 

the smooth breaks. In expression (3), 𝑘 is the frequency to be determined over a pre-

given interval. However, as pointed by Omay (2015) the  breaks caused by sudden 

geo political events and financial crisis are stochastically distributed and 

asymmetrically located. Following this logic, Cai and Omay (2022) relax the 

assumption that the frequency is identical and propose a more general set up where: 

 𝑑𝑡
𝐷𝑓𝑟

= ∑ 𝑐𝑖𝑡𝑖1
𝑖=0 + 𝛼 sin (

2𝜋𝑘𝑠𝑡

𝑇
) + 𝛽 cos (

2𝜋𝑘𝑐𝑡

𝑇
)                                               (4) 

and within the framework of a DF unit root test, the model with optimal 

frequencies 𝑘𝑠 and 𝑘𝑐 is (Double Frequency Dickey Fuller, DFDF herafter): 

 𝑦𝑡 = ∑ 𝑐𝑖𝑡𝑖1
𝑖=0 + 𝛼 sin (

2𝜋𝑘𝑠𝑡

𝑇
) + 𝛽 cos (

2𝜋𝑘𝑐𝑡

𝑇
) + 𝜃𝑦𝑡−1 + 𝜀𝑡,                          (5) 

and the test statistic for the unit root hypothesis 𝐻0: 𝜃 = 1 is: 

 𝜏𝐷𝑓𝑟 =
𝑇(�̂�−1)

√𝑇2𝛿
�̂�
2

                                                                                                      (6) 

where 𝜃 and 𝛿�̂�
2 are OLS estimators of 𝜃 and standard errors. The asymptotic 

distribution of the test statistic 𝜏𝐷𝑓𝑟 only depends on the frequencies 𝑘𝑠 and 𝑘𝑐 and 

the critical values are tabulated (Cai and Omay, 2022, table 1). 

If a nonlinear trend is not actually present in the data, a standard unit root test, 

such as DF or ADF, is more powerful and there is no need of Fourier terms. So, 

before adopting the DFDF test with a predetermined frequency pair (𝑘𝑠, 𝑘𝑐), it 
recommended to test 𝐻0: 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦 versus 𝐻1: 𝑛𝑜𝑛 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦 via an adjusted F test: 

 𝐹𝐷𝑓𝑟(𝑘𝑠, 𝑘𝑐) =
𝑆𝑆𝑅0−𝑆𝑆𝑅1(𝑘𝑠,𝑘𝑐)

2
𝑆𝑆𝑅1(𝑘𝑠,𝑘𝑐)

𝑇−𝑞

                                                                           (7) 



Rivista Italiana di Economia Demografia e Statistica 47 

 

𝑆𝑆𝑅0 and 𝑆𝑆𝑅1(𝑘𝑠, 𝑘𝑐) represent sum of squared residuals without and with 

Fourier components, 𝑞 is the number of regressors. If 𝐻0 is rejected, a functional 

form with Fourier components is suggested. 

Selecting the double frequency is done with a grid search to find the optimal pair 

(𝑘𝑠
∗, 𝑘𝑐

∗), through the minimization of the SSR.  This leads to the modified F test: 

 𝐹𝐷𝑓𝑟(𝑘𝑠
∗, 𝑘𝑐

∗) = 𝑚𝑎𝑥(𝑘𝑠,𝑘𝑐)𝐹𝐷𝑓𝑟(𝑘𝑠, 𝑘𝑐)                                                             

where (𝑘𝑠
∗, 𝑘𝑐

∗) = 𝑎𝑟𝑔𝑚𝑎𝑥𝐹𝐷𝑓𝑟(𝑘𝑠, 𝑘𝑐). Minimizing SSR is equivalent to 

maximizing the 𝐹𝐷𝑓𝑟 test statistic under the condition of maximum frequency 𝑘𝑚𝑎𝑥 

and a searching precision of ∆𝑘 (critical values tabulated). 

 

3. Occasional break processes  

 

For all the above mentioned tests based on the Fourier approximation, the 

literature propose simulation studies to ascertain the size and power properties in 

finite samples. To the best of our knowledge, none of them considers occasional 

break processes in mean, such as Mean Plus Noise and Markov Switching whose 

patterns can be sometimes non easily distinguishable from strong dependent ones 

(Granger and Hyung, 2004). 

The idea of occasional break processes is that the number of breaks that can occur 

in a specific period of time is somehow bounded. More formally, we assume, that 

the probability of breaks, 𝑝, converges to zero slowly as the sample size increases, 

i.e. 𝑝 → 0 as 𝑇 → ∞,  yet 𝑙𝑖𝑚𝑇→∞𝑇𝑝 is a non-zero finite constant. This implies that 

letting 𝑝 decrease with the sample size, realization tends to have just finite breaks. 

The Mean Plus Noise model (Chen and Tiao, 1990; Engle and Smith, 1999) is a 

binomial model, characterized by sudden changes only 

  𝑦𝑡 = 𝑚𝑡 + 𝜀𝑡 ,                                                                                                      (8) 

  𝑚𝑡 = 𝑚𝑡−1 + 𝑞𝑡𝜂𝑡  

where 𝜀𝑡  is a noise variable, the occasional level shifts 𝑚𝑡 are controlled by two 

variables 𝑞𝑡 (date of breaks) and 𝜂𝑡 (size of jump). 𝜂𝑡 is an i.i.d. 𝑁(0, 𝜎𝜂
2) although 

the normality assumption can be dropped. 𝑞𝑡is assumed to be an i.i.d. sequence of 

Bernoulli random variables such that 𝑃(𝑞𝑡 = 1) = 𝑝. 

The structural changes might also occur gradually, in this case a Markov 

switching model (Hamilton, 1989) is more appropriate to describe the behaviour of 

𝑞𝑡. More in details, it is given 𝑠𝑡 a latent random variable that can assume only values 
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0 or 1 and is assumed to be a  Markov chain, with transition probability 𝑝𝑖𝑗 = 𝑃(𝑠𝑡 =

𝑗|𝑠𝑡−1 = 𝑖). Then it is possible to use a switching model for  𝑞𝑡 such that 𝑞𝑡=0 when 

𝑠𝑡=0 and 𝑞𝑡=1 when 𝑠𝑡=1. In this specification a regime with 𝑠𝑡=1 represents a 

period of structural change, regardless of the value of 𝑠𝑡−1. 

 

 

4. Monte Carlo experiment 

 

The experiment investigates the performance of the DFDF and the adjusted F test. 

The DFDF test is applied using the optimal (𝑘𝑠
∗, 𝑘𝑐

∗)  frequencies identified in the 

implementation of the F test.   

The sample size is T=50,150, 300, the number of simulations is 2000 and we 

consider the following occasional break data generating processes (DGPs): 

1) Mean Plus Noise, where 𝑝 = 0.005, 0.01, 0.05, 0.1, 𝜎2 =1, 𝜎𝜂
2= 0.1 

2) Markov Switching, where 𝑝, 𝑞==(0.95, 0.95); (0.95, 0.99); (0.99, 0.95); 

(0.99, 0.99), 𝜎2 =1, 𝜎𝜂
2= 0.1. The initial state 𝑠1 is generated by a Bernoulli 

random variable with 𝑝=0.5 

The percentage of rejection of the null hypothesis of the DFDF and F tests, is an 

estimate of the power of both tests, that have been implemented in the version with 

linear trend as well as in the version with intercept only, i.e. constant level. The 

considered nominal sizes are 5% and 1%. 

The results are presented in the set of tables below (Tables 1-4). As we can see, the 

DFDF test confirms its excellent power properties in both occasional break DGPs 

even at the smallest sample size. Instead, the performance of the F test is low, in 

particular for Mean Plus Noise when 𝑝 is low. This is not surprising, given that the 

smaller is the probability of jumps, the less the DPG shares nonlinear features. It also 

must be noticed that the power improves when 𝑝 grows and in general with the 

sample size. This same pattern, although at a somewhat less evident extent, 

characterizes also the Markov Switching DGP. 

Overall, our simulations confirm the very good power performance documented in 

the literature of the DFDF test, but cast some doubts on the power properties of the 

test F for occasional break DGPs. This issue is very crucial and should be considered 

with great care, given that the F test is preliminary to the DFDF test, hence a failure 

of the F test in rejecting the null hypothesis of linearity would imply a wrong use of 

the standard unit root test in place of the DFDF with consequent further wrong 

inference.  
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Table 1  Mean Plus Noise, percentage of rejection of null hypothesis (nominal size=5%).  

p 
Linear Trend Constant level 

Test F  Test DFDF Test F Test DFDF 

T=50     

0.005 0.002 1 0.004 1 

0.01 0 1 0.004 1 

0.05 0.002 1 0.008 1 

0.1 0.004 1 0.028 1 

T=150     

0.005 0 1 0.038 1 

0.01 0.012 1 0.044 1 

0.05 0.06 1 0.26 1 

0.1 0.176 1 0.47 1 

T=300     

0.005 0.02 1 0.12 1 

0.01 0.072 1 0.216 1 

0.05 0.4 1 0.738 1 

0.1 0.614 1 0.874 1 

 
Table 2  Markov Switching, percentage of rejection of null hypothesis (nominal size=5%). 

p,q 
Linear Trend Constant level 

Test F  Test DFDF Test F Test DFDF 

T=50     

0.95,0.95 0.042 1 0.09 0.984 

0.95,0.99 0.014 1 0.04 0.994 

0.99,0.95 0.056 1 0.15 0.976 

0.99,0.99 0.034 1 0.094 0.994 

T=150     

0.95,0.95 0.67 1 0.744 0.994 

0.95,0.99 0.652 1 0.75 1 

0.99,0.95 0.686 1 0.714 0.996 

0.99,0.99 0.686 1 0.746 0.99 

T=300     

0.95,0.95 0.92 1 0.904 0.998 

0.95,0.99 0.952 1 0.928 0.998 

0.99,0.95 0.918 1 0.92 0.994 

0.99,0.99 0.94 1 0.926 0.998 
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Table 3  Mean Plus Noise, percentage of rejection of null hypothesis (nominal size=1%).  

p 
Linear Trend Constant level 

Test F  Test DFDF Test F Test DFDF 

T=50     

0.005 0 1 0 1 

0.01 0 0.998 0 1 

0.05 0.002 0.992 0.002 1 

0.1 0. 0.998 0.008 1 

T=150     

0.005 0 1 0.014 1 

0.01 0.002 1 0.018 1 

0.05 0.03 1 0.13 1 

0.1 0.086 1 0.286 1 

T=300     

0.005 0.012 1 0.072 1 

0.01 0.044 1 0.144 1 

0.05 0.28 1 0.618 1 

0.1 0.492 1 0.78 1 

 
Table 4  Markov Switching, percentage of rejection of null hypothesis (nominal size=1%). 

p,q 
Linear Trend Constant level 

Test F  Test DFDF Test F Test DFDF 

T=50     

0.95,0.95 0.008 0.984 0.09 0.984 

0.95,0.99 0.006 1 0.04 0.994 

0.99,0.95 0.012 1 0.15 0.976 

0.99,0.99 0.01 1 0.094 0.994 

T=150     

0.95,0.95 0.498 1 0.744 0.994 

0.95,0.99 0.482 1 0.75 1 

0.99,0.95 0.518 1 0.714 0.996 

0.99,0.99 0.526 1 0.746 0.99 

T=300     

0.95,0.95 0.862 1 0.904 0.998 

0.95,0.99 0.878 1 0.928 0.998 

0.99,0.95 0.846 1 0.92 0.994 

0.99,0.99 0.88 1 0.926 0.998 
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