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Abstract. We present here some preliminary results of an ongoing study. The 

subject of this work is a continuous survival function composed of two distinct, 

linear segments. 

 

 

1. Introduction 

 

Typically, the survival function, that we will note 𝑆(𝑥)1, when plotted on the y-

axis depicts the gradual extinction of a generation. Individuals will gradually die off 

until ω, the age reached by the longest-lived one. 𝑆(𝑥) is always non-negative and 

never increases: at best, no one dies—at least for some time, because at age ω the 

last survivor passes away. 

Specifically, we will examine the case where the function consists of two 

identifiable, but joined, linear segments, along with some characteristics of the 

associated stationary population; hereafter, we will not repeat the distinction 

between the function itself and the associated stationary population. 

Let us start with the simplest of these functions, the linear one (or De Moivre): 

 

𝑆𝐷𝑀(𝑥): = 𝑆(0) (1 −
𝑥

ω
) = 𝑆(0)

ω−𝑥

ω
                                                                (1) 

 

We split it at an age 𝐾 not exceeding the maximum longevity ω: in this way 𝑆 

becomes a piecewise continuous linear function. Here we distinguish two parts: 

 The first segment 𝑆1, from birth to K, will have a negative slope. 

 The second segment 𝑆2, from 𝐾 to ω, will be similar but with a different 

inclination; this time it is constrained, since the function must reach zero at 

the final age ω. Therefore, it will correspond to a linear function starting not 

from age zero, but from age 𝐾. As will be shown, despite a more complex 

premise, the outcomes are here simpler than those of the first segment. 

                                                      
1 𝑙(𝑥) is also used in the literature. 
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The respective formulations are characterized by their linearity (technically, a 

constant first derivative), differing in points of origin and slopes respectively 

characterized by the non-negative parameters 𝜆 and ν: 

 

𝑆(𝑥) = {
𝑆1(𝑥) = 𝑆(0) (1 −

𝜆

𝜔 
𝑥)             𝑥 ∈ [0, 𝐾) 

𝑆2(𝑥) = 𝑆(𝐾) [1 −
𝜈

𝜔
(𝑥 − 𝐾)]      𝑥 ∈ [𝐾, 𝜔)        

                             (2) 

 

Since 𝑆 is positive and  0 ≤ 𝐾 ≤ 𝜔, we have the constraint: 

 

𝜆 ∈ [0,
ω

K
]                                                                                                                      (3) 

 

From 𝜆 ≤
𝜔

𝐾
 follows: 

 

{
𝐾 < 𝜔        𝜆 ≤ 1

𝐾 ≤
𝜔

𝜆
       𝜆 > 1                                                                                                      (4) 

 

Since the 𝑆 is continuous, we need to set:2 

 

𝑆1(𝐾) =  𝑆2(𝐾) = 𝑆(0)
(𝜔−𝜆𝐾)

𝜔
                                                                                   (5) 

 

Moreover, the function 𝑆 must be vanished when 𝑥 = 𝜔. This implies that: 

 

𝑆2(𝜔) = 0  ⟺   𝜈 =
𝜔

𝜔−𝐾
                                                                                         (6) 

 

Equations (5) and (6) allows us to rewrite the function 𝑆 without explicating 

parameter 𝜈: 

 

𝑆(𝑥) = {
𝑆(0) (1 −

𝜆

𝜔 
𝑥)             𝑥 ∈ [0, 𝐾) 

𝑆(0) (
𝜔−𝜆𝐾

𝜔
) (

𝜔−𝑥

𝜔−𝐾
)              𝑥 ∈ [𝐾, 𝜔)        

                                           (7) 

 

                                                      
2 Equation (5) will also have to hold for other biometric variables; incidentally, it is also a method of 

verifying the correctness of calculations. 
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We have avoided a more in-depth discussion of the derivation of the model due 

to space constraints. 

The slopes of the two segments are closely related: a relationship conditioned by 

the point at which the function bends. The earlier the value of K, the less abrupt the 

correction needed to bring the curve to the bottom right corner: S(ω) must, in fact, 

have coordinates (0, ω).  

Below is shown how our survival function might appear in the three main cases, 

which we are overlaying here—red for low mortality (K < 1), green for the linear 

case K = 1), and blue for high mortality (K > 1): 

Figure 1  The three cases of the piecewise continuous linear survivor function S(x). 

 

  
 

 

2. Biometric functions 

 

2.1  Deaths 

 

In the continuous analysis, density of deaths is by definition equivalent to the 

absolute value of the slope of the survivors; in our case: 

 

𝑑(𝑥) = {
𝜆

𝑆(0)

𝜔
          𝑥 ∈ [0, 𝐾) 

𝜔−𝜆𝐾

𝜔−𝐾

𝑆(0)

𝜔
    𝑥 ∈ [𝐾, 𝜔)        

                                                                            (8) 

 

Deaths are therefore constant with respect to age, as long as one remains within 

the same segment of the function: this is why we might omit 𝑥. 
Constant yearly deceases imply that the initial cohort 𝑆(0) is equal to the simple 

product of this annual deaths and the maximum age reached by the generation: such 
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principle, valid immediately for De Moivre, must in our case be adapted to the 

existence of two segments with annual deaths respectively 𝑑1 and 𝑑2: 

 

𝑆(0) = 𝐾𝑑1 + (𝜔 − 𝐾)𝑑2 =
𝑆(0)

𝜔
[𝜆𝐾 + (𝜔 − 𝜆𝐾)]                                             (9)                                                                                                    

 
We immediately notice from (8) that the slope of the first segment is directly 

proportional to 𝜆, while that of the second segment to 
𝜔−𝜆𝐾

𝜔−𝐾
 moves in the opposite 

direction with respect to λ. If the first segment is steeper than the linear case (where 

λ = 1), then the slope of the second segment will have to compensate with a softer 

decline in order to reach the bottom right vertex, corresponding to extinction at age 

ω; and vice versa (see Figure 1). 

Now we may introduce the instantaneous mortality rate: 

 

𝜇(𝑥) = {

𝜆

𝜔−𝜆𝑥
                   𝑥 ∈ [0, 𝐾) 

1

𝜔−𝑥
            𝑥 ∈ [𝐾, 𝜔)        

                                                                         (10) 

 

Observe that in the right-piece of the function 𝜇, the parameter 𝜆 does not 

influence the mortality, which is the same as the De Moivre.  

 

2.2  Resistance  

 

Petrioli (1982, pp.177-178) introduces some physical analogies in the field of 

demography, comparing the number of deaths in an age interval to the "work" of 

mortality; he then continues with its "average power" π, which is nothing more than 

the average of deaths per unit of time: 3 

 

𝜋(𝑥 + Δ𝑥) ≔
𝑀(𝑥+Δ𝑥)

Δ𝑥
=

𝑆(𝑥)−𝑆(𝑥+Δ𝑥)

Δ𝑥
                                                                        (11) 

 

Finally, he introduces the "resistance function" r, which "depends on the law of 

elimination and is particularly sensitive to its variations" (p.178): 

 

𝑟(𝑥) ≔
𝜋(𝑥,𝜔)

𝜋(0,𝑥)
=

𝑥𝑆(𝑥)

(𝜔−𝑥)[𝑆(0)−𝑆(𝑥)]
                                                                                (12) 

 

By applying the general formula (12) to our case, we get: 

 

                                                      
3 𝑀(𝑥, 𝑥 + Δ𝑥)  = 𝑆(𝑥) − 𝑆(𝑥 + Δ𝑥) holds true in every survival function. 
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𝑟(𝑥) = {

𝜔−𝜆𝑥

𝜆(𝜔−𝑥)
          𝑥 ∈ [0, 𝐾) 

𝑥(𝜔−𝜆𝐾)

𝜆𝐾(𝜔−𝑥)+𝜔(𝑥−𝐾)
    𝑥 ∈ [𝐾, 𝜔)        

                                                                    (13) 

 

Notice that at 𝑥 = 𝐾 it holds in both cases: 

 

𝑟(𝐾) =
𝜔−𝜆𝐾

𝜆(𝜔−𝐾)
                                                                                                                                  (14) 

 

At this point, we just need to examine the behavior of 𝑟(𝑥), also to check if in 

our case the "bell-shaped trend" emerges as described in Petrioli and Berti 1979 p. 

20: this aspect is currently under investigation. 

 

2.3  Life expectancy 

 

The first step is to retrocumulate the years lived. We start with T2, because in the 

logic of retrocumulation T1 presupposes it: 

 

𝑇2(𝑥) =  ∫ 𝑆2(𝜉)𝑑𝜉
𝜔

𝑥≥𝐾
=

𝑆(𝐾)

𝜔−𝐾
 ∫ (𝜔 − 𝜉) 𝑑𝜉

𝜔

𝑥≥𝐾
=

𝑆(0)

𝜔

𝜔−𝜆𝐾

𝜔−𝐾

(𝜔−𝑥)2

2
                   (15) 

 

where 𝜉 is the mute variable of integration. The subscript notation related to the 

segment is omitted in S(K) because the value coincides in both segments; we will 

continue to do so where possible. We naturally have also: 𝑇1(𝐾) = 𝑇2(𝐾) = 𝑇(𝐾). 

Hence: 

 

𝑇1(𝑥) =  ∫ 𝑆1(𝜉)𝑑𝜉
𝐾

𝑥
+ 𝑇(𝐾) =

𝑆(0)

2𝜔
 [(𝜔2 − 2𝜔𝑥 + 𝜆𝑥2) + (1 − 𝜆)𝐾𝜔]      (16) 

 

In particular, it holds: 

 

𝑇1(0) ≔ 𝑇(0) = 𝑆(0)
𝜔+(1−𝜆)𝐾

2
                                                                          (17) 

 

From T, we finally obtain the life expectancy; by applying the general formula 

𝑒(𝑥) ≔ 𝑇(𝑥)/𝑆(𝑥), we have: 

 

𝑒(𝑥) = {
𝑒1(𝑥) =  

(𝜔2−2𝜔𝑥+𝜆𝑥2)+(1−𝜆)𝐾𝜔

2(𝜔−𝜆𝑥)
                   𝑥 < 𝐾 

𝑒2(𝑥) =
𝜔−𝑥

2
                                                         𝑥 ≥ 𝐾      

                     (18) 
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𝑒1 and 𝑒2 being the left and right sides of the function 𝑒 respectively, we could 

alternatively write the former by separating the elements involving λ: 

 

𝑒1(𝑥) =
(𝜔2−2𝜔𝑥+𝐾𝜔)−𝜆(𝐾𝜔−𝑥2)

2(𝜔−𝜆𝑥)
                                                                        (19) 

 

The value of the second segment e2 is no longer influenced by λ and K, and it is 

equivalent to that of De Moivre. In the first segment, however, both ones appear. In 

particular, the parameters in the second segment affect the number of survivors, but 

not their life expectancy because they cancel out with 𝑇2(𝑥). 

 

It is unnecessary to add that 𝑒1(𝐾) = 𝑒2(𝐾),. 
At birth, we have: 

 

𝑒1(0): = 𝑒(0) =
ω+(1−𝜆)𝐾

2
= 𝑒𝐷𝑀(0) +

(1−𝜆)𝐾

2
                                                 (20) 

 

We derive 𝑒1(𝑥) to systematically discover the effect that age, the slope of the 

first segment, and the bending point have on this: 

 
𝜕𝑒1(𝑥)

𝜕𝑥
= −

𝜆2𝑥2−2𝜆𝜔𝑥+[(2−𝜆)𝜔−𝜆(1−𝜆)𝐾]𝜔

2(𝜔−𝜆𝑥)2                                                                    (21) 

 
𝜕𝑒1(𝑥)

𝜕𝜆
= −

𝜔(𝐾−𝑥)(𝜔−𝑥)

2(𝜔−𝜆𝑥)2                                                                                            (22) 

 
𝜕𝑒1(𝑥)

𝜕𝐾
=

(1−𝜆)𝜔

2(𝜔−𝜆𝑥)
                                                                                                     (23) 

 

Note that everything depends on the numerator—naturally considering any 

preceding "-" —as the denominator is never negative.  

Certainly negative is (22), and it is intuitive why: as 𝜆 increases, the area under 

the survival curve in the ages under K decreases (the critical value 𝜔/𝐾 coincides 

with the slope that zeroes out survivors at the breaking point.); once lost some of 

such initial life-space because of a steeper λ, the tied behaviour of S2 does not 

allow for a full catching-up. 

The sign of (23) clearly depends on 𝜆: above the value of 1 it is positive, negative 

for values below; indeed, increasing 𝐾 extends the action of 𝜆 for a longer period 

before the final compensatory decline. 

The first derivative is the most difficult to evaluate and keeps holds a surprise: it 

is not always negative, as one might expect: Section 3 delves into this further. 
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3. Does aging harm health? 

  

Here we study the trend of life expectancy by age in the first segment of the 

function: after K, we are indeed in a straightforward variation (albeit delayed) of De 

Moivre's law. In this paragraph, for the sake of clarity and ease of treatment, we also 

exclude the degenerate case K = 0, which corresponds to the simple . 

As a general principle, e(x) typically declines because, as intuition suggests, over 

time individuals consume their available life. The inevitability of death implies life 

expectancy generally decreases over the course of existence.  

However, can this function also rise at certain somewhere? The answer, well-

known to demographers, is: yes. This typically occurred at the beginning of life, 

when high mortality rates now were countered by a perspective of lower risks in the 

future. This is a characteristic of survival curves in populations characterized by very 

high infant mortality, typically those in pre-transitional stages: hence the use of the 

imperfect tense. Almost certainly, even today we would observe reversals in life 

expectancy trends if we could measure it from the moment of conception. 

There exists a general formulation for the derivative of life expectancy with 

respect to age, following directly from the application of Leibniz Rule and making 

it more intuitive how life expectancy can rise in certain phases; specifically, those 

characterized by strong immediate mortality followed by high survival for the 

remainder of life: 

 
𝑑𝑒(𝑥)

𝑑𝑥
=  𝜇(𝑥)𝑒(𝑥) − 1                                                                                                                  (24) 

 

A stark example: if one person with a life expectancy of 60 years were forced to 

play the unhealthy game of Russian roulette, his life expectancy would drop to 50 

years, returning then immediately to 60 after (potentially) surviving the ordeal; in 

this calculation, we neglect the time taken for the unpleasant test (de minimis non 

curat prætor) and use a six-chamber revolver. We apply here the general formula 

𝑒(𝑥) = 𝑒𝛼𝑝𝛼 + 𝑒�̃�(1 − 𝑝𝛼), more statistical than demographic, where p is the 

survival probability and  �̃� denotes cases other than 𝛼. 
Now we may focus on equation (21) considering its numerator as a quadratic in 

the variable 𝑥: 
 

𝜕𝑒1(𝑥)

𝜕𝑥
= −

𝜆2𝑥2−2𝜆𝜔𝑥+[(2−𝜆)𝜔−𝜆(1−𝜆)𝐾]𝜔

2(𝜔−𝜆𝑥)2 =: −
Ξ(𝑥)

2(𝜔−𝜆𝑥)2                                             (25) 

 

A positive numerator implies the reassuring downward derivative with respect to 

age. It should be noted that Ξ is preceded by a minus sign—which we leave in place 

without including it in our variable—and that the denominator cannot be negative.  
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However, we will try to establish when the normal trend of life expectancy 

reverses, increasing with age. To this end we set up the inequality: 

 

Ξ(𝑥) < 0 ⟺ 𝑥 ∈ [
𝜔−√𝜔(𝜆−1)(𝜔−𝜆𝐾)

𝜆
,

𝜔+√𝜔(𝜆−1)(𝜔−𝜆𝐾)

𝜆
]                                      (26) 

 

The right-hand value of the interval for 𝑥 would be greater than 𝐾𝑀𝑎𝑥 (formally, 

we could write 𝑥𝑅 > 𝐾𝑀𝑎𝑥, where 𝑥𝑅 stands for "right", just as 𝑥𝐿 stands for "left") 

and thus becomes irrelevant; let's rewrite then, also using survival probabilities 

 

𝑥 > 𝑥𝐿 =
𝜔−√𝜔(𝜆−1)(𝜔−𝜆𝐾)

𝜆
= [1 − √(𝜆 − 1)𝑝(0, 𝐾)]𝐾𝑀𝑎𝑥 →

𝜕𝑒1(𝑥)

𝜕𝑥
> 0    (27) 

 

Now we evaluate Ξ in the various possible cases, divided into three parts ordered 

by the values of λ, within which we will distinguish a few subcases. 

 

3.1 La dolce vita: 𝜆 ∈ [0,1) 

 

From equation (25) it is clear that 

 

Ξ ≔ 𝜆2𝑥2 − 2𝜆𝜔𝑥 + [(2 − 𝜆)𝜔 − 𝜆(1 − 𝜆)𝐾]𝜔 

      = (𝜔 − 𝜆𝑥)2 + (1 − 𝜆)(𝜔 − 𝜆𝐾)𝜔                                                                         (28) 

 

This reformulation makes it clear that Ξ will always be positive here; 

consequently, the derivative (25) will be trivially negative, as expected when the 

instantaneous mortality is modest. Nevertheless, we will provide a few brief 

considerations for the notable sub-case 𝜆 = 0, Ξ = 2𝜔2; the (25), in its entirety, is 

instead −1: here, the life expectancy decreases by an amount equivalent to the time 

elapsed, without partial recoveries for the avoided mortality, which is zero. 

 

 

3.2.  The right path: 𝜆 = 1 

 

We have here a classical Moivre, where the radical contained in (26) becomes 

zero: the solution would then be 𝑥𝑅/𝐿 = 𝐾𝑀𝑎𝑥; however, it is better to directly 

calculate it: by substituting 𝜆 with 1 in (25), we simply obtain -1/2. 
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3.3.  Life is hard (and short): 𝜆 > 1 

 

Here things get more complicated (and interesting), because Ξ can be negative; 

since the term 𝑥𝐿 in (27) now becomes decisive, it is important to study its main 

features.  Since the maximum value of x here is K (recall that we are in the first 

segment of the function), we can try to see if 𝑥𝐿 can be lower4 thus allowing for our 

eagerly sought inversion: 

 

𝑥𝜆>1
𝐿 < 𝐾 →  𝜔 − 𝜆𝐾 <  √𝜔(𝜆 − 1)(𝜔 − 𝜆𝐾)  →   𝜔 − 𝜆𝐾 < 𝜔(𝜆 − 1)     (29) 

 

By solving (29) for K, we obtain: 

 

𝑥𝜆>1
𝐿 < 𝐾 ⟺ 𝐾 > (2 − 𝜆)

𝜔

𝜆
= (2 − 𝜆)𝐾𝑀𝑎𝑥                                                      (30) 

 

Alternatively, we can also proceed by considering 𝜆: 
 

𝑥𝜆>1
𝐿 < 𝐾 ⟺ 𝜆 >

2𝜔

𝐾+𝜔
∈ [1,2]                                                                              (31) 

 

In both formulations, it is evident that the inversion can occur when the slope is 

steeper than that in the linear case; moreover, since 𝐾 ≤ 𝜔 it appears with certainty 

for 𝜆 > 2. 

Once it is established when the inversion can (or must) occur, it remains to see if 

we start from birth in negative territory; this is also a matter of great interest 

because—keeping in mind that, as noted when discussing (26), 𝑥𝑅 cannot interfere 

—in this case, the inversion would occur throughout the entire first segment of the 

function. Note that this is a sufficient condition, whereas the previous one was 

necessary.  

From (27), we can derive: 

 

𝑥𝜆>1
𝐿 < 0 → 𝜔 < (𝜆 − 1)(𝜔 − 𝜆𝐾) → (𝜆 − 2)𝜔 > (𝜆 − 1)𝜆𝐾                            (32) 

 

Then we obtain: 

 

𝑥𝜆>1
𝐿 < 0 → 𝐾 <

𝜆−2

𝜆−1
 𝐾𝑀𝑎𝑥                                                                                    (33) 

 

                                                      
4 Note that from (27), we already know that it cannot be greater than 𝐾𝑀𝑎𝑥 and certainly not greater 

than ω. 
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Hence, the inversion at all ages (of the first segment, obviously) is possible only 

if 𝜆 > 2. 

Figure 2  Inversion of the function e(x) with  𝜆 > 2 (left) and  𝜆 ∈ (1,2) (right). 

 
 

 

4. Conclusions 

 

The present work investigates some theoretical and mathematical properties of 

the function 𝑆(𝑥), highlighting key aspects that are seldom addressed in existing 

models. A particularly intriguing result is the observed growth of 𝑒(𝑥) with age, 

which appears to be linked to the pronounced angularity of the piecewise linear 

structure of 𝑆(𝑥). Let us add also the importance of λ = 2 as threshold (this holds 

true also for λ = 1, but this was expected); notable also how some final outcome can 

be seen as a combination of the two original linear functions (see Appendix). 

To the best of our knowledge, these behaviours are scarcely explored in current 

frameworks, suggesting potential avenues for further investigation and possible 

applications. 

Looking ahead, an interesting direction for future research involves the 

generalization to quadratic or polynomial forms of 𝑆(𝑥). Specifically, a rigorous 

theoretical analysis could aim to determine whether polynomial curves 

𝑆(𝑥) inherently preclude the growth of life expectancy 𝑒(𝑥) with age—or 

conversely, whether such growth can occur under specific conditions. Addressing 

this question would deepen our understanding of the interplay between 

𝑆(𝑥) structure and 𝑒(𝑥). 
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Appendix  

 

Frankenstein function 

 

We can consider the piecewise function as the grafting of two linear functions, 

one for each segment: from the first one, A, we obtain the first line, from 0 to K; 

from the second function, B, we obtain the segment from K to ω.  

A has a maximum age �̂�𝐴 , different from the global 𝜔: if  𝑆1(𝑥), shown in (7), 

extended beyond K, it would nullify for: 

𝑆(0) (1 −
𝜆

𝜔
𝑥) = 0 →   𝑥 ≔ �̂�𝐴 =

𝜔

𝜆
                                                             (34) 

From which we can write it as a classic De Moivre with a new longevity: 

𝑆𝐴(𝑥) = 𝑆(0) (1 −
𝑥

�̂�𝐴)                                                                                   (35) 

In the case of B we are looking for that initial contingent 𝑆𝐵(0) that can adapt 

the second segment of the original piecewise function. We have: 

𝑆𝐵(𝑥) ≔ 𝑆2(𝑥)  →  𝑆𝐵(0) = 𝑆(0) (
𝜔−𝜆𝐾

𝜔−𝐾
)                                                     (36) 

Hence we get a De Moivre, with different initial contingent. As we see by 

rewriting the second line of (7): 

𝑆𝐵(𝑥) = 𝑆(0) (
𝜔−𝜆𝐾

𝜔−𝐾
) (1 −

𝑥

𝜔
)                                                                        (37) 

Moreover, it can be proved, but we omit it due to space limitations, that 𝑒(0) is 

equal to the sum of 𝑒𝐴(0) and 𝑒𝐵(0), weighted with 𝑐0
𝐴 =

𝜆𝐾

𝜔
=

𝜆

𝜆𝑀𝑎𝑥 =
𝐾

𝐾𝑀𝑎𝑥 and 

𝑐0
𝐵 = 1 − 𝑐0

𝐴.More in-depth developments of this idea are currently under 

investigation. 
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