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ON THE USE OF RANDOM FOREST TO IMPUTE
CATEGORICAL VARIABLES BEYOND THE SAMPLE

Ilaria Bombelli, Romina Filippini, Simona Toti

Abstract. The new paradigm of the Official Statistical production is based on a system of
registers, resulting from the integration of administrative and survey data. Administrative
data provide a complete enumeration of the units they cover: however, this population usually
represents only a specific subset of the statistical target population, and such a subset is
typically not obtained through a probabilistic sampling design. Similarly, survey data also
cover only a subset of the population of interest, but they are made representative through
the use of weights. Another common limitation of administrative sources is the delay in data
availability.

In this context, generating a complete and consistent dataset is a critical task, which
requires the implementation of specific procedures to account for delayed data and to impute
missing values. One possible strategy is to use survey data as the target variable. However,
this raises the issue of how to properly incorporate weights into the estimation model.

An example of a mass imputation approach is provided by the official estimates of the
Attained Level of Education (ALE) adopted by the Italian National Institute of Statistics
(Istat) for all the resident population in Italy. The official procedure is based on the estimation
of different log-linear models.

In this application, we focus on the use of Random Forest (RF) to leverage the opportunities
presented by Machine Learning (ML) technique on using all available information, including
longitudinal data and variables with many categories. This approach allows for capturing
complex relationships between variables, which is often challenging to incorporate
comprehensively using standard methods.

The results are evaluated by focusing on different scenarios, each related to a level of
available information, and focusing on three population subsets, each characterized by a
different pattern of available information.

1. Introduction

Nowadays, Official Statistics is required to produce reliable and timely data to
analyse and describe phenomena related to demography, economy, environment, and
other aspects of society. Such data can be useful for decision makers and
stakeholders to clearly understand problems and plan necessary actions. At the same
time, it is required to satisfy several constraints. On the one hand, more and new
statistics are demanded, requiring considerable resources, both monetary and in
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terms of effort. On the other hand, survey units are less likely to spend their time in
filling in questionnaires, leading to high non-response rates. Therefore, Official
Statistics must also address the issue of respondent burden.

In this framework, Official Statistics can exploit new data sources, such as
administrative data, and new data collection methods. These alternatives can be used
for statistical purposes. Moving from considering only traditional data sources and
collection methods to being able to combine both traditional and new ones implies
an important change in the paradigm. The new paradigm of the Official Statistical
production is based on a system of registers, resulting from the integration of
administrative and survey data.

The integration of administrative and survey data addresses several challenges.
First, both administrative and survey data typically cover only a portion of the target
population. Indeed, administrative data provide a complete enumeration of the units
within the population they capture, but this population usually represents only a
specific subset of the statistical target population. Similarly, survey data also cover
only a subset of the population of interest, but representativeness is ensured through
the application of sampling weights, derived from the survey design, and through
calibration techniques. Another typical issue concerns the timing of data availability,
as administrative sources are often provided with a lag time. Moreover, while survey
data are specifically designed for statistical purposes, administrative data are not;
therefore their integration requires additional effort, particularly in the
harmonization of target parameter and the definition of target populations.

Consequently, within this framework, generating a complete and consistent
dataset becomes a critical task. This requires the implementation of various
procedures to predict delayed data and impute missing values. One possible strategy
is to use survey data as the target variable.

An example of applying a mass imputation approach is provided by the official
estimates of the Attained Level of Education (ALE) adopted by the Italian National
Institute of Statistics (Istat) to cover the whole resident population in Italy.

The official procedure consists in estimating various log-linear models. In this
paper, we propose an alternative approach, implementing a ML technique,
specifically Random Forest (Breiman, 2001), to impute ALE. Indeed, ML approach
allows to leverage all available information, including longitudinal data and
variables with many categories. Moreover, these methods are able to capture
complex relationships between variables that are often difficult to model
comprehensively using traditional methods. However, the use of ML methods brings
up the issue of how to appropriately incorporate sampling weights into the estimation
process.

The remainder of the paper is organized as follows. Section 2 provides a general
framework for ALE imputation, describing the data availability and their structure
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and detailing the official procedure based on log-linear models. Section 3 presents
an overview of the Random Forest (RF) model. In Section 4, we illustrate the
application of RF for ALE imputation, including a discussion on the incorporation
of sampling weights and variable selection. Finally, Section 5 summarizes the main
findings and discusses relevant issues and further developments.

2. Framework on Attained Level of Education

Many statistical outputs on the Italian resident population produced by Istat
originate from the Base Register of Individuals (BRI), a statistical register that
provides the most comprehensive coverage of individuals and contains core
demographic information for each unit, gathered from various sources. Since a
substantial amount of information related to education is available at the micro level
from administrative sources, it is of interest to produce register-based statistics on
ALE rather than survey-based. However, a key limitation of administrative data is
that they are not fully up to date: for reference year t, administrative information on
ALE is only available up to year t-1. Moreover, administrative sources cover only a
specific subset of the target population.

To this end, a strategy has been implemented to estimate ALE for all individuals
included in the BRI. This approach allows to produce official ALE statistics at
different levels of detail and aggregation.

As ALE for the reference year t is observed only for a sample of individuals,
interviewed for the Italian Permanent Census, imputations are required in order to
enrich the BRI with the information on ALE, for units beyond the sample. This can
be achieved by exploiting the high amount of administrative information, available
at a micro level.

2.1. Data Description

For each unit of the reference population, a set of core variables gathered from
different sources is available. This information is age, gender, citizenship, place of
birth, and place of residence.

As regards the topic of education, longitudinal information is available from
administrative sources, in particular, the Ministry of Education, University and
Research (MIUR) provides information about ALE and course attendance for people
entering a study program after 2011 and covers the period from 2011 to t-1 (scholar
year t-1/t).

For individuals who have not attended any school course since 2011 and are
therefore not included in the MIUR dataset, data from the 2011 Census are used to
fill the gap. However, a residual subset of individuals—accounting for about 5% of
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the reference population—is not covered by any administrative sources on ALE.
This subgroup consists of individuals who either entered Italy after 2011 or were
present in Italy in 2011 but not captured by the Census, and who have not enrolled
in any study program recorded by MIUR.

Another source containing information on ALE is the so-called APR4-module.
This is the registration and cancellation form that must be filled in when applying
for a change of residence, either for a new registration in Italy from abroad and/or
when changing one’s usual residence within the country. ALE information on APR4
is self-declared and classified into 4 aggregated categories.

Finally, an important source of information on ALE comes from the survey. Since
2018, Istat has collected ALE data through the Italian Permanent Census sample
survey. As a result, directly observed ALE data for the reference year t are available
for approximately 5% of the population, known as the Master Sample (MS).

Since Istat classification for ALE estimates is based on 8 categories, all ALE
variables (with the exception of APR4) are harmonized and reclassified accordingly:
1 - llliterate, 2 - Literate but no formal educational attainment, 3 - Primary education,
4 - Lower secondary education, 5 - Upper secondary education, 6 - Bachelor’s degree
or equivalent level, 7 - Master’s degree or equivalent level, 8 - PhD level.

The different availability of information on ALE determines the partition of the
target population into three subgroups, each characterized by a different pattern of
available information.

A. Individuals who enrolled in a school course covered by MIUR in at least one
school year after 2011, are characterized by a high amount of information
available, including demographic information, longitudinal information on
ALE, and school enrollment characteristics.

B. Individuals not in MIUR, interviewed in the 2011 Census, are characterized
by the availability of demographic information and information on ALE
referring to the year 2011.

C. Finally, individuals not in MIUR nor in the 2011 Census are associated only
with demographic information, while ALE data are available only for a subset
of them through the APR4-modules.

For each subgroup of individuals, ALE at year t is available for a representative

sample interviewed in the MS.

2.2. Official procedure

The official procedure to impute ALE relies on the use of different log-linear
models. Specifically, for individuals attending a school course in year t-1, the model
predicts ALE given the year of the course attended the previous year. On the other
hand, for individuals not enrolled in any school course covered by MIUR, due to the
MIUR under-coverage, it is necessary to resort to sample survey data.
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The conditional probabilities of each ALE category, are estimated for each
profile, and the predicted class of each individual is then obtained by randomly
drawing from the estimated probability distribution (Di Zio et al., 2019).

3. Random Forest Algorithm

The Random Forest algorithm, introduced by Breiman (2001), is a general-
purpose ML method suitable for both classification and regression tasks. It is an
ensemble learning technique that generates multiple independent decision trees and
combines their predictions using bagging (bootstrap aggregating). Specifically, each
tree is constructed using a different bootstrap sample of the data and, at each node
split, the best predictor is selected from a randomly chosen subset of features.

The final output of the RF model is obtained by aggregating the predictions of
the individual trees. In regression tasks, this involves averaging the outputs of all
trees. In classification tasks, the final prediction is typically based on a majority vote,
although it is also possible to obtain the class probabilities instead of just the
predicted class labels.

In our case, the classification forests were constructed using the Gini index as the
splitting criterion. Class predictions were derived from the estimated class
probabilities. Particularly, the predicted class of each individual is obtained by
randomly drawing the class from the probability distribution of the classes related to
each individual.

To implement RF in R, we used the ranger package (Wright & Ziegler, 2017). To
achieve optimal predictive performance with RF, it is important to tune the
hyperparameters — parameters that must be set before training and are not learned
from the data (Probst et al., 2019). Among the various hyperparameters, we focused
on tuning: mtry, which controls the number of variables randomly selected as
candidate features at each split; min.node.sez, which determines the minimum
number of observations required in a terminal node (i.e., the minimum size of the
leaves).

The results presented in the following sections were obtained using the
tuneRanger R package (Probst et al., 2018), which provides automated tuning of the
hyperparameters for the ranger implementation of RF.

4. Application

The experiment in the present paper considers data from the Emilia Romagna
Region, with the aim of producing a complete and consistent estimate of ALE for
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the reference year t=2022. To this purpose, a RF model is trained on the MS survey
to predict the variable ALE for all residents in the Region.

The prediction of ALE for the units beyond the sample can be obtained from RF
mainly in two ways: using the majority voting approach, i.e., predicting the class
with the highest probability; predicting the class randomly drawn from the RF
estimate probabilities.

Since our goal is to generate predictions that closely matches the distribution of
ALE in the MS, the results are evaluated by assessing the degree of alignment
between the predicted distribution and the benchmark distribution provided by the
MS. As a consequence, we adopt the second approach as it provides a higher
coherence at the macro-level (De Fausti et al., 2022).

The majority voting approach, indeed, allows for good performance at the micro-
level. However, it completely reduces all probabilistic information to a single
category, thus losing the shape of the predicted distribution. In contrast, the random-
draw approach allows the shape of the predicted distribution to be preserved,
avoiding the distortion induced by the majority voting and preserving the variability
(see, for example, Little and Rubin, 2002). In this sense, the second approach allows
for better performance at the macro-level.

4.1. Sampling weights usage

The probabilistic sampling design of the MS assigns to each unit a sample weight
that quantifies the number of population units that the unit represents.

Standard statistical model requires to include sampling weights at the likelihood
level. In the ML framework, different possibilities are explored to consider the
sample weights; we focus on two options: a) Ignoring them; b) Considering them by
building the augmented version of the sample, by repeating each record a number of
times given by the sampling weight of the record.

Option a) ignores the statistical probabilistic nature of the sample; in option b),
the input dataset is augmented by replicating each row according to its sampling
weight. In this way, the augmented MS mimics the target population structure.

In the initial experiments with RF, the same set of input variables used in the log-
linear models is considered. Specifically, these variables are described in Section 4.2
and summarized in Table 2, Scenario 1.

Results are evaluated at the macro-level by comparing the distribution of ALE
across the whole population with the benchmark, represented by the ALE
distribution in the augmented MS, corresponding to the weighted ALE distribution.
Performance is measured by computing the difference between the percentage
relative frequencies of the predicted distributions and those of benchmark
distribution.
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Table 1 — Absolute (a.v.) and percentage (%) distribution of ALE in the Augmented MS
(benchmark). Differences between predicted and benchmark distribution.

Augmented MS Estimated — Augmented MS
" av. % Log-Linear Ignorianu?Neights Augmer\r,l't:ed data

1 16717 0.4% 0.05% -0.01% -0.02%
2 130504 3.2% -0.21% -0.25% -0.25%
3 585713 14.2% 0.25% 0.09% 0.05%
4 1135472 27.4% 0.02% -0.13% -0.11%
5 1571471 38.0% 0.27% 0.32% 0.33%
6 187616 4.5% -0.14% 0.00% 0.00%
7 486049 11.7% -0.25% -0.05% -0.03%
8 23777 0.6% 0.00% 0.03% 0.02%
Sum of absolute values 1.20% 0.88% 0.81%
Mean of absolute values 0.15% 0.11% 0.10%

The results in Table 1 show that applying RF models leads to better performance,
measured in terms of the sum of absolute differences, compared to log-linear models.
The improvement is particularly evident for ALE classes 3 (Primary education), 6
(Bachelor’s degree), and 7 (Master’s degree). Since both models rely on the same
set of input variables, the performance gain can be mainly attributed to the ability of
RF to capture non-linear relationships.

Moreover, the inclusion of sampling weights in the construction of the augmented
MS leads to slightly improved results.

Overall, the predictions obtained with the RF that incorporates sampling weights
(applied to the augmented MS) are more consistent with the benchmark distribution
than those obtained without using weights. Specifically, the sum of the differences
between the estimated and benchmark distributions is 0.88% when weights are
ignored, and 0.81% when weights are included.

Therefore, in the following analyses, the reported results refer to RF models
trained on the augmented MS data.

4.2. Variables selection and encoding

After establishing the approach for accounting for sample weights and using the
augmented MS as input data, we explored the full space of potential predictors to
identify those to include in our model. We implemented three distinct scenarios to
evaluate the effect of adding predictors and different levels of aggregation for
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predictor categories. These scenarios are designed to assess the contribution of
additional data and the potential of ML techniques to capture complex relationships.

The first scenario (Scenario 1) includes the same variables used in the log-linear
regression model. This allows for a direct comparison of performance between the
methods, highlighting the ability of ML techniques to capture non-linear
relationships. This feature set includes demographic characteristics, i.e., age, gender,
citizenship, and province of residence; educational data for the school year t-2/t-1,
i.e., ALE, school enrollment status, year of attendance, type of upper secondary
school.

The second scenario (Scenario 2) includes the same variables used in Scenario 1,
with more granular levels of detail for the variable Type of upper secondary school:
from 3 to 28 categories.

Table 2 — Description of input variables: type, presence of missing values and, encoding
used in the RF. An: “X” indicates the inclusion of each variable in the scenarios.

Variable Type anyNA Encoding Scen.1 Scen.2  Scen. 3

Age Numerical Ordinal X X X
Gender Binary Dummy X X X
Italian or not Cat. (2 classes) Dummy X X
Province of residence Categorical Dummy X X X
Subgroup Cat. (3 classes) Dummy X X X
ALE from Administrative .
Sources (MIUR or Cens11) Cat. (8 classes+1) X Ordinal X X X
ALE from APR4 Cat. (4 classes+1) X Ordinal X X X

. X X
Year of attendance Cat. (32 classes+1) X Ordinal (t-1) X (t1: t-2)
Evening school Cat. (2 classes+1) X Dummy (t-l)'( t-2)
Type of attendance Categorical X Dummy t1 ?(t-Z)
Type of primary/lower X
secondary school Cat. (2 classes+1) X (t-1;t-2)
Type of upper secondary school Cat. (2 classes+1) X Dummy (tﬁ)
Type of upper secondary school Cat. (28 classes+1) X Dummy X (t-l)'( t-2)

Finally, Scenario 3 is implemented to fully exploit the potential of ML methods.
This subset incorporates additional information on school attendance (type of
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primary and lower secondary school, evening school, and type of attendance) as well
as data from previous years.
Table 2 provides a synthetic overview of the three scenarios.

In the three scenarios, nominal categorical predictors are converted into dummy
variables (in R factors), and missing data are replaced with an “out-of-range” value,
namely 99 or “99”.

A comparison of the results across the different scenarios (Table 3) shows that,
as the amount of available information increases (from Scenario 1 to Scenario 3),
overall prediction performance improves accordingly, with Scenario 3 yielding the
best results.

Table 3 — Summary statistics of differences between % relative frequency distribution
obtained by RF model and the % relative frequency distribution of benchmark
distribution, separately by subpopulations.

Overall Pop A Pop B Pop C

Augmented data — scenario 1
Sum of absolute values 0.81% 1.92% 0.79% 1.74%
Mean of absolute values 0.10% 0.24% 0.10% 0.22%
Augmented data — scenario 2
Sum of absolute values 0.76% 1.90% 0.77% 1.97%
Mean of absolute values 0.09% 0.24% 0.10% 0.25%
Augmented data — scenario 3
Sum of absolute values 0.69% 1.79% 0.78% 2.80%
Mean of absolute values 0.09% 0.22% 0.10% 0.35%
Augmented data — scenario 3

Fixed variables

Sum of absolute values 0.82% 1.79% 0.84% 1.55%

Mean of absolute values 0.10% 0.22% 0.10% 0.19%

This trend is evident when focusing on population A, characterized by more
informative profiles. For population B, the predictive performance of the RF remains
stable across the three scenarios. In contrast, for population C, the trend is the
opposite of that observed for population A—that is, prediction performance worsens
as the amount of information increases. This occurs because the third scenario
introduces additional variables that are informative only for population A and B. In
RF, the trees are built by randomly selecting a subset of predictors from the full set
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(which is larger in Scenario 3) to evaluate at each split. As a result, the probability
of selecting the informative predictors—those useful for estimating population C
based only on demographic information—decreases from Scenario 1 to Scenario 3.

Indeed, the tuning across the three scenarios selects a high number of predictors:
in all cases, the mtry value is very close to the total number of covariates, and the
leaf size is very small. This indicates that the tuned RF trees are very deep and make
use of nearly all the available covariates.

In the latest experiment, demographic information was constrained to be included
at every split. The results of the RF model built in this way are comparable to those
obtained in the three scenarios, with the best performance in predicting population
C. However, in this case, the mtry value is much lower than the total number of
predictors—approximately equal to the square root of the number of predictors.

5. Discussion

In this work, we showed how the use of ML technique can help for imputation
purposes. We proposed to impute the ALE for units beyond MS using RF model.

The evaluation of the results was carried out at a macro level, using as a
benchmark the distribution derived from the augmented MS with sampling weights.

When comparing ALE predictions from the official LL procedure with those
generated by the RF model—based on their divergence from the benchmark
distribution—the RF model shows superior performance, particularly when trained
on the augmented sample.

In the second part of the analysis, we explored the possibility of incorporating all
available information into the model. ML models generally offer the advantage of
handling a high number of input features, including fully disaggregated categorical
variables. This flexibility represents a key strength of ML approaches compared to
traditional statistical models.

We designed three scenarios to evaluate the contribution of additional
information and to assess the ability of the RF model to leverage this information
across three subpopulations, each characterized by distinct information profiles.
Overall, the results show a clear trend: the difference from the benchmark
distribution decreases with a progressively closer alignment as we move from the
least informative to the most informative scenario.

However, the improvement manifests differently across subpopulations: there is
a clear gain for the population with more populated regressors (subpopulation A),
relative stability for the group with moderately informative profiles (subpopulation
B), and a marked deterioration for the subpopulation with only demographic
information (subpopulation C). In fact, the increase in the number of regressors
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makes the selection of the informative predictors for ALE in subpopulation C less
likely during the tree-splitting process. Even for subpopulation C, the results are
comparable to the overall ones, because the increase in the number of regressors is
balanced by the hyperparameter mtry, which is appropriately tuned.

Usually, the suggested default value for mtry is close to the square root of the
number of regressors (see, for example, Breiman, 2002). However, as the author
suggested, when very noise regressors are present, the mtry parameter should be
higher. In our application, the patterns of available information differ substantially
across subpopulations. For sub-population C only three covariates are informative
while the remaining regressors are essentially noise. For this reason, the tuning
process indicates that the optimal value of mtry is close to the total number of
regressors. However, if the trees are forced to consider, at each split, the non-missing
regressors of subpopulation C among the randomly selected candidates, then the
overall prediction performance becomes comparable to that of the other RF. In this
case, prediction for subpopulation C improves significantly, with the optimal mtry
value close to the square root of the number of regressors.

In conclusion, this research shows that the suggested value of mtry cannot be
applied without taking into account the structural characteristics of the data. While
it is a good choice when information is uniformly distributed across the population
and no noisy regressors are present, it becomes inadequate in scenarios characterized
by heterogeneous information patterns and the presence of noisy regressors, as in the
case of our study.

The flexibility of the RF structure, which can adapt to different prediction
scenarios through the specification of different hyperparameters, makes the tuning
phase essential and allows for the semi-automatic handling of prediction problems
in presence of highly heterogeneous populations.

In general, when the population of interest is highly heterogeneous in terms of
available information, ML provides a valuable tool, i.e., the ensemble model. The
idea of an ensemble model is to combine different ML techniques, each one
specifically suited for a subpopulation, to obtain a final prediction for each unit. This
approach can be useful in our application. As a further development, we plan to
implement additional ML models, better suited for subpopulations B and C, such as
XGBoost (Chen and Guestrin, 2016), and Neural Network (Rumelhart et al., 1986).
Finally, we aim to combine these different ML models into a single ensemble model
(see, for example, Dietterich, 2000).
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