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Abstract. The prediction of criminal recidivism through machine learning (ML) models 

raises significant ethical, legal, and methodological challenges. This article promotes for a 

transparency and explainability-oriented approach by comparing three predictive models – 

logistic regression, random forest, and neural networks – applied to the COMPAS dataset of 

criminal history data, released by ProPublica a non-profit journalism organization in USA. 

To assess the coherence and readability of algorithmic decisions interpretability techniques 

such as SHAP values are employed. The analysis also considers the implications of adjusting 

the decision threshold to increase false positives for supportive – rather than punitive – 
purposes, emphasizing the greater ethical and social acceptability of such a strategy. The 

discussion is complemented by an overview of the regulatory developments in Italy and the 

European Union regarding the use of predictive technologies in the criminal justice system. 

 

 

1. Introduction 

 

Recidivism is broadly defined as the tendency of previously convicted individuals 

to reoffend, serving as a key indicator of risk, social dangerousness, and the 

effectiveness of penal and rehabilitative measures (Baratta, 1998; Lappi-Seppälä, 

2003). Identifying the factors associated with reoffending as well as understanding 

their interactions can support prevention strategies, resource allocation, and 

evidence-based decision-making in the justice system. 

Definitions and measurements of recidivism vary across jurisdictions. Some systems 

consider only new convictions while others include arrests or reports (Weatherburn 

et al., 2003). In Italy, recidivism is regulated by articles 99–105 of the Penal Code 

which influence sentencing and enforcement. International organizations such as the 

United Nations Office on Drugs and Crime (UNODC, 2018) and the Council of 

Europe (SPACE, 2023) adopt different indicators depending on whether the focus is 

on policy evaluation, reintegration, or risk assessment. 

Initial predictive efforts relied on static models using demographic and criminal 

history data (Burgess, 1928; Glueck and Glueck, 1950). Since the 1970s, attention 

shifted toward dynamic models that incorporate contextual and modifiable variables 

(Andrews and Bonta, 2010). In the last two decades, the development of machine 
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learning (ML) has enabled more complex, yet less transparent, systems (Berk et al., 

2018), underscoring the need for interpretable tools to guarantee transparency for 

legal actors and the public. 

From a legal perspective, there is a clear divergence between common law and 

civil law systems. In Italy, Article 220 of the Code of Criminal Procedure prohibits 

expert assessments on personality or criminal propensity during trial, thereby 

restricting the use of AI tools to post-sentencing phases. Conversely, in common law 

systems such as the U.S., tools like COMPAS (Correctional Offender Management 

Profiling for Alternative Sanctions) are routinely integrated into judicial decision-

making in several States. Common law jurisdictions are increasingly adopting 

principles of fairness, accountability, and transparency (Citron and Pasquale, 2014), 

whereas civil law countries require a more cautious, rights-based approach (Floridi 

et al., 2018). These institutional differences shape how ML systems are introduced 

into the justice sector and raise important questions about balancing predictive 

efficiency with the protection of individual rights. 

The European Union’s AI Act (Regulation EU 2024/1689), adopted on August 

1, 2024, establishes a harmonized framework based on four levels of risk. 

Recidivism prediction tools categorized as “high risk” are subject to rigorous 

standards concerning transparency, reliability, fairness, and continuous oversight. 

While the AI Act seeks to facilitate the European digital single market, it also allows 

national authorities to tailor implementation to local legal traditions, ensuring respect 

for fundamental rights. 

 

 

2. Data and Methods 

 

This study relies on the COMPAS dataset published by a non-profit investigative 

journalism organization (Propublica, 2016), which contains information more than 

7,000 individuals arrested in Broward County, Florida. It includes demographic data, 

criminal history, risk scores and a binary recidivism outcome within two years. We 

focused on key features: age, decile score, prior offenses, ethnicity (origins), gender, 

and offense type. Moderate linear correlations are observed between age and decile 

score (0.39), prior offenses and decile score (0.43), decile score and recidivism 

(0.35). The decile score, a composite risk indicator of recidivism correlates with 

reoffending as expected. The dataset showed issues of racial bias (Angwin et al., 

2016) and misclassification risks (Venkataraman, 2025). Instead of predicting 

individual risk scores, our aim is to investigate the relative importance of features 

and their contribution to the overall decision-making process. Despite ethical and 

legal constraints (Rudin et al., 2020), we argue that ML can elucidate complex crime 

patterns in data on convicts/detainees and guide targeted interventions.  
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Our approach combines a data-driven methodology using machine learning 

models like Random Forests and Neural Networks for predictive pattern detection, 

alongside interpretable models such as Logistic Regression to enhance transparency. 

Our goal is to critically evaluate the reliability and interpretability of these models. 

All models were implemented in Python using specific packages: 

sklearn.preprocessing, model_selection, sklearn.metrics, sklearn.linear_model, 

sklearn.ensemble, keras, sklearn.cluster, kmodes.prototypes, shap. 

Because the dataset contains features with different units of measure, variables 

were standardized to ensure comparability. In our preprocessing, we applied min-

max normalization. Given potential heterogeneity in model performance, 

maximizing accuracy supports the identification of local explanations and the 

ranking of feature importance. 

For the Logistic Regression model, we used default parameters from the 

"linear_model" package. The Random Forest model employed 100 trees from the 

"ensemble" package, with other hyperparameters left unchanged; increasing this 

number could improve performance but would increase model complexity. For 

example, a randomized search (“RandomizedSearchCV”) might identify a model 

with similar accuracy using 385 trees. The Neural Network is sequential, with three 

layers consisted of 16, 16, and 1 neuron(s); the first two layers used Rectified Linear 

Unit (ReLU) activation, while the final layer used sigmoid function. The optimizer 

was Adam, and the loss function was binary_crossentropy. The same test set served 

as validation. 

We split the COMPAS dataset into training and test sets to evaluate model 

performance and to compute accuracy on the test data, in order to reduce the risk of 

overfitting. We focused on supervised learning approach for classification, where 

input features (labelled data) where mapped to discrete outcome categories. We used 

the test set to assess model capacity in the population (Hold-out procedure). We 

fitted our data with Random Forest, a non-parametric supervised learning method 

for non-linear relationships defined as an ensemble model, the result of aggregating 

a set of Decision Trees; it avoids local optima and correlation, Decision Trees 

limitations, through bagging and features selection. We also applied Neural networks 

(thousands of simple nonlinear models that work together, very difficult to interpret) 

and Logistic regression for comparing classification results, as they are 

representative in the trade-off between interpretability and accuracy (Wang et al., 

2023). 

With a binary target we analysed the classification report and the confusion 

matrix, focusing on the most important metrics: accuracy, recall, precision, F1-

score and specificity. The confusion matrix is created by setting an assignment 

threshold. The decision threshold or cutoff point, generally set at 0.5, is a critical 

value used to convert the output of a classification model into a class prediction, 
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since many algorithms return a probability score indicating the likelihood that an 

input belongs to the positive class, the threshold determines the cutoff point for 

classification. We obtained feature importance through the SHAP values related to 

each classifier, a powerful method for explaining the predictions of any machine 

learning model representing how much each feature contributes to a particular 

prediction for a given instance, given the expected baseline. We also analysed the 

classifiers behaviour in subgroups, to verify if accuracy is homogeneous in these 

subsets. To this end, we applied unsupervised classification to group the N units into 

clusters, to ensure that units within the same cluster displayed homogeneity. 

We employed K-means to partition observations by minimizing within-cluster 

variance and maximizing separation between groups. To avoid instability associated 

with random initialization, we adopted the more robust K-means++ method. This 

approach improves convergence and clustering quality by selecting initial centroids 

with probabilities proportional to their squared distance from those already chosen, 

ensuring more diverse and informative starting points. 

In order to select the optimal number of clusters K, we computed the Silhouette 

Score, which evaluates how well each unit fits its assigned cluster (cohesion) 

compared to the nearest alternative cluster (separation). The score ranges from –1 to 

1, with higher values indicating better-defined clusters (1). 

 

s(i) = b(i)-a(i) / max{b(i), a(i)}      (1) 

 

where a(i) is the average distance of each unit i to all the other units in its assigned 

cluster, and b(i) is the average distance of unit i to the units in the nearest cluster to 

which it was not assigned. The optimal K was selected by maximizing the silhouette 

score. A hierarchical solution with Ward’s method (Ward, 1963) confronted at the 

same K produced similar values, supporting robustness, while K-means++ achieved 

slightly higher silhouette values, indicating improved stability and separation. By 

clustering similar instances, we identified subgroups differentiated by accuracy, and 

we analysed each cluster in terms of label imbalance, evaluation metrics, and SHAP-

based feature importance (Lundberg and Lee, 2017). SHAP provides a linear 

explanation model in which binary variables attribute an effect to each feature; the 

sum of these contributions approximates the original model’s output f(x) (2). 

 

g(z') = 𝜙0 +  ∑ 𝜙𝑖 𝑧′𝑖
𝑀
𝑖=1         (2) 

 

where 𝑧′𝑖 in {0,1}, M is the number of simplified input features, i ∈ R, f is the original 

prediction model to be explained and g the explanation model. 
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We compared subgroup metrics with the overall situation on the entire test set to 

underline differences and define each subgroup peculiarity: the idea is that the 

defined subgroup may highlight regions where the problem is more or less accurate. 

 

 

3. Outcomes 

 

The models show (Table1) accuracies of 0.68 (Logistic Regression), 0.67 (Neural 

Networks), and 0.63 (Random Forest), with the latter performing worst. 

To assess overfitting, performance variability was evaluated via Cross-Validation 

(CV), which revealed a standard deviation (std) of 0.02 across all models, thus 

excluding significant overfitting. 

Table 1 − Classification report, main metrics for each class (negative, positive). Logistic 

Regression, Neural Networks, Random Forest models; COMPAS dataset. 

 

Models Precision Recall F1-score Support 

Logistic Regression     

negative 0.69 0.78 0.73 1,189 

positive 0.68 0.57 0.62 976 

     

Accuracy   0.68 2,165 

Macro avg 0.68 0.67 0.67 2,165 

Weighted avg 0.68 0.68 0.68 2,165 

     

Neural Networks     

negative 0.66 0.82 0.73 1,189 

positive 0.69 0.50 0.58 976 

     

Accuracy   0.67 2,165 

Macro avg 0.68 0.66 0.66 2,165 

Weighted avg 0.68 0.68 0.67 2,165 

     

Random Forest     

negative 0.66 0.69 0.67 1,189 

positive 0.60 0.56 0.58 976 

     

Accuracy   0.63 2,165 

Macro avg 0.63 0.63 0.63 2,165 

Weighted avg 0.63 0.63 0.63 2,165 

     
Note: negative (N) corresponds to non-recidivist; positive (P) corresponds to recidivist 

All models show higher F1-scores for the negative class, as recall is greater for 

non-recidivists. Conversely, precision exceeds recall for the positive class, indicating 
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better control of false positives than false negatives. Given the higher risk of false 

positives in criminal recidivism, prioritizing precision reduces the chance of 

mislabelling non-recidivists as recidivists. In the COMPAS tool’s trade-off, avoiding 

missed recidivists is considered more acceptable than penalizing non-recidivists. The 

Receiver Operating Characteristic-Area under the Curve (ROC-AUC) values (0.74 

for Logistic Regression and Neural Networks, 0.68 for Random Forest) support these 

findings; 0.74 is considered excellent for complex classification tasks. Selecting an 

optimal threshold requires analysing the confusion matrix to balance FP and TP 

where T and F denote true and false predicted values, respectively.  

We obtained feature importance through the SHAP values (Figure 1), in general 

model agnostic while the actual computation for different model types often uses 

specific approximations or exact algorithms. The explainer for Random Forest is 

specifically designed for tree-based models and ensembles of trees (model specific) 

and can calculate SHAP values exactly or with high accuracy and efficiency, taking 

into account all possible paths. Due to the nature of tree models, Tree SHAP is 

particularly effective at capturing and quantifying interaction effects among features. 

Figure 1 − Feature importance based on the mean absolute SHAP values of the Random 

Forest model for the COMPAS dataset. 

 

The confusion matrix (Figure 2) shows consistent patterns across models, except 

for Random Forest. It has a higher proportion of FPs (16.95%) and a lower TNs 

(37.97%), indicating a greater risk of overestimate the recidivism (false positive 

errors). 

In complex scenarios characterized by weak feature-target relationships or nearly 

indistinguishable classes, an AUC of 0.68 (as achieved by the Random Forest model) 

may still be acceptable. Further analysis is required: evaluation of feature selection, 

hyperparameters optimization and classifier behaviour across specific subsets. 
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Figure 2 − Confusion matrix: comparison between actual (rows) and predicted values 

(columns). Logistic Regression, Neural Network and Random Forest models; 

COMPAS dataset. 

  

 

 

We grouped similar units, selecting a nine-cluster solution based on the peak 

Silhouette Score (k = 9, 0.57), a value considered reasonable (Figure 3). 

Figure 3 −  Silhouette score and number of clusters for COMPAS dataset. 
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Figure 4 − Accuracy of the Random Forest model calculated for each cluster identified using 

the K-Means method (k = 9) on the COMPAS dataset. 

 

We compared K-means and K-prototypes for clustering numerical and binary 

features from the COMPAS dataset. The results showed no significant differences 

in classification accuracy across clusters – an essential focus of this study – nor in 

overall clustering quality (k = 8, silhouette score = 0.60). We selected K-means, 

which produced the widest accuracy range, and applied a Random Forest classifier 

to the resulting clusters (Figure 4). Cluster centroids and sizes were computed. 

Accuracy ranged from 0.54 (cluster 6) to 0.73 (cluster 3). Comparing the global 

metrics with those of cluster 3 with the highest accuracy, patterns emerged that 

helped identify factors potentially enhancing classification performance (Table 2). 

Table 2 − Classification report, main metrics for each class, cluster n.3 (left side) and whole 

dataset COMPAS (right side) based on the Random Forest model. 

 

Random Forest (cluster n.3) Random Forest (whole dataset) 

Random 
Forest 

Preci-
sion 

Re-
call 

F1-
score 

Sup-
port 

Balan-
ce 

Preci-
sion 

Re-
call 

F1-
score 

Sup-
port 

Balan-
ce 

negative 0.76 0.91 0.83 86 0.71 0.66 0.69 0.67 1,189 0.55 

positive 0.56 0.29 0.38 35 0.29 0.60 0.56 0.58 976 0.45 
                      

Accuracy     0.73 121       0.63 2,165   

Macro avg 0.66 0.60 0.60 121   0.63 0.63 0.63 2,165   
Weighted 
avg 0.70 0.73 0.70 121   0.63 0.63 0.63 2,165   
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The confusion matrix for cluster 3 versus the whole dataset (Figure 5) indicates 

improved recall for the negative class but decreased recall for the positive class, 

reflecting class imbalance (>70% non-recidivists). Consequently, FPs decrease (6.61 

vs. 16.95), TNs increase (64.46 vs. 37.97), while TPs decline (8.26 vs. 25.40). 

Figure 5 − Random Forest model's confusion matrix. Comparison between actual (rows) 

and predicted values (columns). Cluster n.3 (left) and the COMPAS dataset 

(right). 

 

SHAP values in the most accurate clusters identified key features influencing 

model behaviour. In cluster 3, gender – specifically female – was more important 

than age, while origin was not relevant; this cluster mainly include Caucasian women 

with minor offenses and low risk scores (Figure 6).  

Figure 6 − Random Forest model's SHAP values for cluster no. 3 (left) and COMPAS dataset 

(right). 

  
 
Cluster 8 (not shown), with similar profiles but of African origin, also 

demonstrated high accuracy (0.71). Conversely, cluster 6 (not shown): Caucasian 

men with serious offenses and high-risk scores, had the lowest accuracy (0.54), likely 

due to recidivism imbalance. Importantly, ceteris paribus, individuals of African 
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origin (cluster 0) outperformed their Caucasian counterparts: accuracy increased 

from 0.54 to 0.62 (not shown). 

 

 

4. Conclusions and future perspective 

 

This study examines the predictive potential of ML models in assessing criminal 

recidivism risk, using the COMPAS dataset as a case study. Three supervised 

classification models – logistic regression, neural networks, and random forest – 

were tested and evaluated in terms of accuracy, interpretability, and subgroup 

variability. Although the overall predictive performance was moderate (maximum 

accuracy 0.68), logistic regression and neural networks outperformed random forest, 

particularly with respect to the area under the ROC curve (AUC) and F1-score. 

This study shows that clustering reveals substantial accuracy heterogeneity in the 

COMPAS data: K-means++ identified stable subgroups with distinct performance 

levels, a structure confirmed by a Ward hierarchical solution and supported by 

slightly higher silhouette scores. SHAP values clarified why accuracy varies, with 

high-performing clusters showing consistent feature contributions and low-

performing ones affected by heterogeneity and class imbalance. These results show 

that overall accuracy can hide substantial performance differences across subgroups. 

Cluster-based evaluation and interpretability methods therefore provide a more 

reliable and transparent assessment of model behaviour in criminal-risk prediction. 

From a legal perspective, the study highlights the divergence between civil and 

common law systems: while tools like COMPAS are used in the U.S., In the Italian 

legal system, predictive assessments of individual risk are restricted by procedural 

norms (Article 220 of the Italian Code of Criminal Procedure), effectively limiting 

the use of AI tools to the post-sentencing phase. The EU AI Act (Regulation 

2024/1689) classifies such tools as high-risk, subjecting them to strict requirements 

of transparency, reliability, and protection of fundamental rights  

Despite their current limitations, ML models could serve a complementary but 

important role in public policy and correctional planning. Their use should not be 

confined to making decisions about alternative sanctions or sentencing. Instead, they 

may be strategically employed to identify individuals at higher risk of reoffending, 

thereby enabling targeted interventions and the efficient allocation of social support 

services. We suggest adjusting the classification threshold; in this context, 

prioritizing a slightly higher false positive rate may be ethically acceptable if it serves 

to initiate rehabilitative or generally supportive interventions for the individual – 

rather than punitive measures. 

In conclusion, while machine learning holds promise for enhancing our 

understanding of recidivism patterns and informing data-driven policies, its 
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application in the criminal justice domain must remain grounded in legal safeguards, 

methodological transparency, and a strong commitment to human rights. Future 

research should further explore the integration of richer contextual variables, 

investigate algorithmic fairness across demographic groups. 
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