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CRIMINAL RECIDIVISM. TOWARDS RELIABLE AND
TRANSPARENT PREDICTIVE MODELS

Flavia Tagliafierro, Claudio Caterino

Abstract. The prediction of criminal recidivism through machine learning (ML) models
raises significant ethical, legal, and methodological challenges. This article promotes for a
transparency and explainability-oriented approach by comparing three predictive models —
logistic regression, random forest, and neural networks — applied to the COMPAS dataset of
criminal history data, released by ProPublica a non-profit journalism organization in USA.
To assess the coherence and readability of algorithmic decisions interpretability techniques
such as SHAP values are employed. The analysis also considers the implications of adjusting
the decision threshold to increase false positives for supportive — rather than punitive —
purposes, emphasizing the greater ethical and social acceptability of such a strategy. The
discussion is complemented by an overview of the regulatory developments in Italy and the
European Union regarding the use of predictive technologies in the criminal justice system.

1. Introduction

Recidivism is broadly defined as the tendency of previously convicted individuals

to reoffend, serving as a key indicator of risk, social dangerousness, and the
effectiveness of penal and rehabilitative measures (Baratta, 1998; Lappi-Seppéld,
2003). Identifying the factors associated with reoffending as well as understanding
their interactions can support prevention strategies, resource allocation, and
evidence-based decision-making in the justice system.
Definitions and measurements of recidivism vary across jurisdictions. Some systems
consider only new convictions while others include arrests or reports (Weatherburn
et al., 2003). In Italy, recidivism is regulated by articles 99-105 of the Penal Code
which influence sentencing and enforcement. International organizations such as the
United Nations Office on Drugs and Crime (UNODC, 2018) and the Council of
Europe (SPACE, 2023) adopt different indicators depending on whether the focus is
on policy evaluation, reintegration, or risk assessment.

Initial predictive efforts relied on static models using demographic and criminal
history data (Burgess, 1928; Glueck and Glueck, 1950). Since the 1970s, attention
shifted toward dynamic models that incorporate contextual and modifiable variables
(Andrews and Bonta, 2010). In the last two decades, the development of machine
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learning (ML) has enabled more complex, yet less transparent, systems (Berk et al.,
2018), underscoring the need for interpretable tools to guarantee transparency for
legal actors and the public.

From a legal perspective, there is a clear divergence between common law and
civil law systems. In Italy, Article 220 of the Code of Criminal Procedure prohibits
expert assessments on personality or criminal propensity during trial, thereby
restricting the use of Al tools to post-sentencing phases. Conversely, in common law
systems such as the U.S., tools like COMPAS (Correctional Offender Management
Profiling for Alternative Sanctions) are routinely integrated into judicial decision-
making in several States. Common law jurisdictions are increasingly adopting
principles of fairness, accountability, and transparency (Citron and Pasquale, 2014),
whereas civil law countries require a more cautious, rights-based approach (Floridi
et al., 2018). These institutional differences shape how ML systems are introduced
into the justice sector and raise important questions about balancing predictive
efficiency with the protection of individual rights.

The European Union’s Al Act (Regulation EU 2024/1689), adopted on August
1, 2024, establishes a harmonized framework based on four levels of risk.
Recidivism prediction tools categorized as “high risk” are subject to rigorous
standards concerning transparency, reliability, fairness, and continuous oversight.
While the Al Act seeks to facilitate the European digital single market, it also allows
national authorities to tailor implementation to local legal traditions, ensuring respect
for fundamental rights.

2. Data and Methods

This study relies on the COMPAS dataset published by a non-profit investigative
journalism organization (Propublica, 2016), which contains information more than
7,000 individuals arrested in Broward County, Florida. It includes demographic data,
criminal history, risk scores and a binary recidivism outcome within two years. We
focused on key features: age, decile score, prior offenses, ethnicity (origins), gender,
and offense type. Moderate linear correlations are observed between age and decile
score (0.39), prior offenses and decile score (0.43), decile score and recidivism
(0.35). The decile score, a composite risk indicator of recidivism correlates with
reoffending as expected. The dataset showed issues of racial bias (Angwin et al.,
2016) and misclassification risks (Venkataraman, 2025). Instead of predicting
individual risk scores, our aim is to investigate the relative importance of features
and their contribution to the overall decision-making process. Despite ethical and
legal constraints (Rudin et al., 2020), we argue that ML can elucidate complex crime
patterns in data on convicts/detainees and guide targeted interventions.
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Our approach combines a data-driven methodology using machine learning
models like Random Forests and Neural Networks for predictive pattern detection,
alongside interpretable models such as Logistic Regression to enhance transparency.
Our goal is to critically evaluate the reliability and interpretability of these models.
All  models were implemented in Python wusing specific packages:
sklearn.preprocessing, model_selection, sklearn.metrics, sklearn.linear_model,
sklearn.ensemble, keras, sklearn.cluster, kmodes.prototypes, shap.

Because the dataset contains features with different units of measure, variables
were standardized to ensure comparability. In our preprocessing, we applied min-
max normalization. Given potential heterogeneity in model performance,
maximizing accuracy supports the identification of local explanations and the
ranking of feature importance.

For the Logistic Regression model, we used default parameters from the
"linear_model" package. The Random Forest model employed 100 trees from the
"ensemble" package, with other hyperparameters left unchanged; increasing this
number could improve performance but would increase model complexity. For
example, a randomized search (“RandomizedSearchCV”’) might identify a model
with similar accuracy using 385 trees. The Neural Network is sequential, with three
layers consisted of 16, 16, and 1 neuron(s); the first two layers used Rectified Linear
Unit (ReLU) activation, while the final layer used sigmoid function. The optimizer
was Adam, and the loss function was binary_crossentropy. The same test set served
as validation.

We split the COMPAS dataset into training and test sets to evaluate model
performance and to compute accuracy on the test data, in order to reduce the risk of
overfitting. We focused on supervised learning approach for classification, where
input features (labelled data) where mapped to discrete outcome categories. We used
the test set to assess model capacity in the population (Hold-out procedure). We
fitted our data with Random Forest, a non-parametric supervised learning method
for non-linear relationships defined as an ensemble model, the result of aggregating
a set of Decision Trees; it avoids local optima and correlation, Decision Trees
limitations, through bagging and features selection. We also applied Neural networks
(thousands of simple nonlinear models that work together, very difficult to interpret)
and Logistic regression for comparing classification results, as they are
representative in the trade-off between interpretability and accuracy (Wang et al.,
2023).

With a binary target we analysed the classification report and the confusion
matrix, focusing on the most important metrics: accuracy, recall, precision, F1-
score and specificity. The confusion matrix is created by setting an assignment
threshold. The decision threshold or cutoff point, generally set at 0.5, is a critical
value used to convert the output of a classification model into a class prediction,
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since many algorithms return a probability score indicating the likelihood that an
input belongs to the positive class, the threshold determines the cutoff point for
classification. We obtained feature importance through the SHAP values related to
each classifier, a powerful method for explaining the predictions of any machine
learning model representing how much each feature contributes to a particular
prediction for a given instance, given the expected baseline. We also analysed the
classifiers behaviour in subgroups, to verify if accuracy is homogeneous in these
subsets. To this end, we applied unsupervised classification to group the N units into
clusters, to ensure that units within the same cluster displayed homogeneity.

We employed K-means to partition observations by minimizing within-cluster
variance and maximizing separation between groups. To avoid instability associated
with random initialization, we adopted the more robust K-means++ method. This
approach improves convergence and clustering quality by selecting initial centroids
with probabilities proportional to their squared distance from those already chosen,
ensuring more diverse and informative starting points.

In order to select the optimal number of clusters K, we computed the Silhouette
Score, which evaluates how well each unit fits its assigned cluster (cohesion)
compared to the nearest alternative cluster (separation). The score ranges from —1 to
1, with higher values indicating better-defined clusters (1).

s(i) = b(i)-a(i) / max{b(i), a(i)} 1)

where a(i) is the average distance of each unit i to all the other units in its assigned
cluster, and b(i) is the average distance of unit i to the units in the nearest cluster to
which it was not assigned. The optimal K was selected by maximizing the silhouette
score. A hierarchical solution with Ward’s method (Ward, 1963) confronted at the
same K produced similar values, supporting robustness, while K-means++ achieved
slightly higher silhouette values, indicating improved stability and separation. By
clustering similar instances, we identified subgroups differentiated by accuracy, and
we analysed each cluster in terms of label imbalance, evaluation metrics, and SHAP-
based feature importance (Lundberg and Lee, 2017). SHAP provides a linear
explanation model in which binary variables attribute an effect to each feature; the
sum of these contributions approximates the original model’s output f(X) (2).

9z)=¢o + XiLi¢i Z'; (2)

where z'; in {0,1}, M is the number of simplified input features, i € R, f is the original
prediction model to be explained and g the explanation model.
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We compared subgroup metrics with the overall situation on the entire test set to
underline differences and define each subgroup peculiarity: the idea is that the
defined subgroup may highlight regions where the problem is more or less accurate.

3. Outcomes

The models show (Tablel) accuracies of 0.68 (Logistic Regression), 0.67 (Neural
Networks), and 0.63 (Random Forest), with the latter performing worst.

To assess overfitting, performance variability was evaluated via Cross-Validation
(CV), which revealed a standard deviation (std) of 0.02 across all models, thus
excluding significant overfitting.

Table 1 — Classification report, main metrics for each class (negative, positive). Logistic
Regression, Neural Networks, Random Forest models; COMPAS dataset.

Models Precision Recall F1-score Support
Logistic Regression
negative 0.69 0.78 0.73 1,189
positive 0.68 0.57 0.62 976
Accuracy 0.68 2,165
Macro avg 0.68 0.67 0.67 2,165
Weighted avg 0.68 0.68 0.68 2,165
Neural Networks
negative 0.66 0.82 0.73 1,189
positive 0.69 0.50 0.58 976
Accuracy 0.67 2,165
Macro avg 0.68 0.66 0.66 2,165
Weighted avg 0.68 0.68 0.67 2,165
Random Forest
negative 0.66 0.69 0.67 1,189
positive 0.60 0.56 0.58 976
Accuracy 0.63 2,165
Macro avg 0.63 0.63 0.63 2,165
Weighted avg 0.63 0.63 0.63 2,165

Note: negative (N) corresponds to non-recidivist; positive (P) corresponds to recidivist

All models show higher F1-scores for the negative class, as recall is greater for
non-recidivists. Conversely, precision exceeds recall for the positive class, indicating
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better control of false positives than false negatives. Given the higher risk of false
positives in criminal recidivism, prioritizing precision reduces the chance of
mislabelling non-recidivists as recidivists. In the COMPAS tool’s trade-off, avoiding
missed recidivists is considered more acceptable than penalizing non-recidivists. The
Receiver Operating Characteristic-Area under the Curve (ROC-AUC) values (0.74
for Logistic Regression and Neural Networks, 0.68 for Random Forest) support these
findings; 0.74 is considered excellent for complex classification tasks. Selecting an
optimal threshold requires analysing the confusion matrix to balance FP and TP
where T and F denote true and false predicted values, respectively.

We obtained feature importance through the SHAP values (Figure 1), in general
model agnostic while the actual computation for different model types often uses
specific approximations or exact algorithms. The explainer for Random Forest is
specifically designed for tree-based models and ensembles of trees (model specific)
and can calculate SHAP values exactly or with high accuracy and efficiency, taking
into account all possible paths. Due to the nature of tree models, Tree SHAP is
particularly effective at capturing and quantifying interaction effects among features.

Figure 1 — Feature importance based on the mean absolute SHAP values of the Random
Forest model for the COMPAS dataset.
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The confusion matrix (Figure 2) shows consistent patterns across models, except
for Random Forest. It has a higher proportion of FPs (16.95%) and a lower TNs
(37.97%), indicating a greater risk of overestimate the recidivism (false positive
errors).

In complex scenarios characterized by weak feature-target relationships or nearly
indistinguishable classes, an AUC of 0.68 (as achieved by the Random Forest model)
may still be acceptable. Further analysis is required: evaluation of feature selection,
hyperparameters optimization and classifier behaviour across specific subsets.
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Figure 2 — Confusion matrix: comparison between actual (rows) and predicted values
(columns). Logistic Regression, Neural Network and Random Forest models;

COMPAS dataset.
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We grouped similar units, selecting a nine-cluster solution based on the peak
Silhouette Score (k =9, 0.57), a value considered reasonable (Figure 3).

Figure 3 — Silhouette score and number of clusters for COMPAS dataset.
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Figure 4 —Accuracy of the Random Forest model calculated for each cluster identified using
the K-Means method (k = 9) on the COMPAS dataset.
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We compared K-means and K-prototypes for clustering numerical and binary
features from the COMPAS dataset. The results showed no significant differences
in classification accuracy across clusters — an essential focus of this study — nor in
overall clustering quality (k=38, silhouette score=0.60). We selected K-means,
which produced the widest accuracy range, and applied a Random Forest classifier
to the resulting clusters (Figure 4). Cluster centroids and sizes were computed.
Accuracy ranged from 0.54 (cluster 6) to 0.73 (cluster 3). Comparing the global
metrics with those of cluster 3 with the highest accuracy, patterns emerged that
helped identify factors potentially enhancing classification performance (Table 2).

Table 2 — Classification report, main metrics for each class, cluster n.3 (left side) and whole
dataset COMPAS (right side) based on the Random Forest model.

Random Forest (cluster n.3) Random Forest (whole dataset)
Random Preci- Re- F1- Sup- Balan- Preci- Re- F1- Sup- Balan-
Forest sion call  score port ce sion call  score port ce
negative 0.76 0.91 0.83 86 0.71 0.66 0.69 0.67 1,189 0.55
positive 0.56 0.29 0.38 35 0.29 0.60 0.56 0.58 976 0.45
Accuracy 0.73 121 0.63 2,165
Macro avg 0.66 0.60 0.60 121 0.63 0.63 0.63 2,165
Weighted
avg 0.70 0.73 0.70 121 0.63 0.63 0.63 2,165
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The confusion matrix for cluster 3 versus the whole dataset (Figure 5) indicates
improved recall for the negative class but decreased recall for the positive class,
reflecting class imbalance (>70% non-recidivists). Consequently, FPs decrease (6.61
vs. 16.95), TNs increase (64.46 vs. 37.97), while TPs decline (8.26 vs. 25.40).

Figure 5 — Random Forest model's confusion matrix. Comparison between actual (rows)
and predicted values (columns). Cluster n.3 (left) and the COMPAS dataset

(right).
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SHAP values in the most accurate clusters identified key features influencing
model behaviour. In cluster 3, gender — specifically female — was more important
than age, while origin was not relevant; this cluster mainly include Caucasian women
with minor offenses and low risk scores (Figure 6).

Figure 6 —Random Forest model's SHAP values for cluster no. 3 (left) and COMPAS dataset
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Cluster 8 (not shown), with similar profiles but of African origin, also
demonstrated high accuracy (0.71). Conversely, cluster 6 (not shown): Caucasian
men with serious offenses and high-risk scores, had the lowest accuracy (0.54), likely
due to recidivism imbalance. Importantly, ceteris paribus, individuals of African
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origin (cluster 0) outperformed their Caucasian counterparts: accuracy increased
from 0.54 to 0.62 (not shown).

4. Conclusions and future perspective

This study examines the predictive potential of ML models in assessing criminal
recidivism risk, using the COMPAS dataset as a case study. Three supervised
classification models — logistic regression, neural networks, and random forest —
were tested and evaluated in terms of accuracy, interpretability, and subgroup
variability. Although the overall predictive performance was moderate (maximum
accuracy 0.68), logistic regression and neural networks outperformed random forest,
particularly with respect to the area under the ROC curve (AUC) and F1-score.

This study shows that clustering reveals substantial accuracy heterogeneity in the
COMPAS data: K-means++ identified stable subgroups with distinct performance
levels, a structure confirmed by a Ward hierarchical solution and supported by
slightly higher silhouette scores. SHAP values clarified why accuracy varies, with
high-performing clusters showing consistent feature contributions and low-
performing ones affected by heterogeneity and class imbalance. These results show
that overall accuracy can hide substantial performance differences across subgroups.
Cluster-based evaluation and interpretability methods therefore provide a more
reliable and transparent assessment of model behaviour in criminal-risk prediction.

From a legal perspective, the study highlights the divergence between civil and
common law systems: while tools like COMPAS are used in the U.S., In the Italian
legal system, predictive assessments of individual risk are restricted by procedural
norms (Article 220 of the Italian Code of Criminal Procedure), effectively limiting
the use of Al tools to the post-sentencing phase. The EU Al Act (Regulation
2024/1689) classifies such tools as high-risk, subjecting them to strict requirements
of transparency, reliability, and protection of fundamental rights

Despite their current limitations, ML models could serve a complementary but
important role in public policy and correctional planning. Their use should not be
confined to making decisions about alternative sanctions or sentencing. Instead, they
may be strategically employed to identify individuals at higher risk of reoffending,
thereby enabling targeted interventions and the efficient allocation of social support
services. We suggest adjusting the classification threshold; in this context,
prioritizing a slightly higher false positive rate may be ethically acceptable if it serves
to initiate rehabilitative or generally supportive interventions for the individual —
rather than punitive measures.

In conclusion, while machine learning holds promise for enhancing our
understanding of recidivism patterns and informing data-driven policies, its
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application in the criminal justice domain must remain grounded in legal safeguards,
methodological transparency, and a strong commitment to human rights. Future
research should further explore the integration of richer contextual variables,
investigate algorithmic fairness across demographic groups.
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