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1. Introduction 

 

Survival analysis refers to a set of statistical techniques used to estimate the 

probability of the occurrence of a given event as a function of time (Collet, 2003). 

This collection of statistical procedures is also known as time-to-event analysis. It 

focuses on the study of the time elapsed from a specific moment up to the point when 

a specific event (death) will occur. 

Models underlying survival analysis are usually expressed in terms of age-dependent 

mortality rate estimates.  

Two types of approach emerge from the literature: a parametric approach that 

specifies a mathematical form for mortality rates (hazard rates) as a function of 

chronological age, and a non-parametric approach that sets the mortality rate of a 

given age as a weighted average of the ‘raw’ mortality rates. 

According to the parametric approach, the seminal work of Gompertz (1825) 

implies that the total death rate is composed of an age-dependent term which 

increases exponentially with chronological age.  

A first and non-exhaustive revised version of Makeham (1867) includes a non-

age-dependent mortality rate in the Gompertz mortality law. In fact, the Gompertz–

Makeham (GM) model has been expanded several times to allow for a specific shape 

of mortality. For example, Heligman and Pollard (1980) model mortality rate as an 

eight-parameter function of age, specifying the model in terms of mortality odds. 

Kostaki (1992) extends the Heligman-Pollard model to eliminate some biases in its 

estimation. Furthermore, Dellaportas et al. (2001) estimate the Heligman–Pollard 

model within a Bayesian framework. 

Tabeau et al. (2002) review parametric functions used to model mortality and 

discuss the applicability of different parametric models to estimate the age and 

effects of mortality. 

Recently, Milevsky (2020) developed a computational framework for inverting 

GM mortality hazard rates to present a new definition of age: the longevity-risk-

adjusted global (L-RaG) age. The computation of longevity-risk-adjusted global age 

involves multifaceted aspects of aging by allowing the estimation of the number of 

years a person seems to be (biological age) from his/her chronological age. Indeed, 
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the computational process of L-Rag age begins by collecting data on mortality rates 

as a function of chronological age, as well as any other characteristics or elements 

associated with mortality. 

On the other hand, non-parametric models used to estimate the survival function 

from lifetime data do not assume a theoretical distribution for F. This approach is 

inherent to studies of clinical trials where the following estimators assume particular 

importance: Kaplan-Maier estimator (Kaplan et al., 1958), Nelson–Aalen estimator 

(Nelson, 1969), and longrank test (Peto and Peto, 1972). 

We contribute to the existing literature by applying the above-mentioned work of 

Milevsky (2020) to obtain L-RaG age estimates among Italian regions for two 

different years (2011 and 2018), while proving that this quantitative indicator of 

biological age is related to a sentiment indicator of the perceived age (healthy life 

expectancy and one’s life satisfaction) provided by the ISTAT database within 

the BES project1. The ISTAT indicators are obtained via surveys with the aim of 

detecting living conditions in Italian regions and reflecting human feeling. An 

interesting point is that an objective indicator (i.e., L-RaG age) can mimic a 

sentiment indicator, thus implying that human feeling relies on different lifestyle 

conditions. Analysis at regional level allows us to investigate the impact of the well-

known difference between Northern and Southern Italy considering a biological 

indicator on different age classes. 

In the following sections, we describe the GM mortality law and L-RaG age 

indicator, and we conclude with some results. 

 

 

2. The GM mortality law 

 

The GM mortality law is the linear relationship between the natural mortality rate 

and chronological age x, i.e., the number of years a person has been alive. Indeed, 

every adult life in the region i, for i =  1, . . . , N can be expressed by the following 

parametrization: 

 

𝜇𝑥[𝑖] − 𝜆[𝑖] = {
ℎ[𝑖]𝑒𝑔[𝑖]𝑥       𝑥 < 𝑥∗

 𝜆∗                  𝑥 ≥ 𝑥∗
,                     (1) 

 
where µ𝑥[𝑖] =  1 (1 −  𝑞𝑥[𝑖])⁄  is the total hazard rate (THR) and 𝑞𝑥[𝑖] obtained from 

ISTAT mortality tables is the one-year decrement rate.  

The region-specific parameters 𝜆[𝑖], ℎ[𝑖], 𝑔[𝑖] represent the accidental death rate, 

a.k.a. the Makeham constant, the initial natural mortality rate (INMR), and the 

                                                      
1 Data collected from a sample of respondents that took a survey. 
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mortality growth rate (MGR), respectively. As well, 𝑥∗, i.e., the critical chronological 

age at which the Gompertzian regime ends, and 𝜆∗ >  𝜆[𝑖], i.e., the plateau mortality 

rate faced when chronological ages are equal to 𝑥∗, are global parameters estimated 

at the global (Italian) level. 

Parameters 𝜆∗ and 𝑥∗ are also known as species-specific accidental mortality rate 

the species-specific lifespan (Richards, 2020). 

Rearranging Eq. (1), the model can be expressed as:  

 

𝑙𝑛(𝜇𝑥[𝑖] − 𝜆[𝑖]) = 𝑙𝑛(ℎ[𝑖]) + 𝑔[𝑖]𝑥, 𝑥 < 𝑥∗                                                  (2) 

 

which is the standard linear representation of total hazard minus accidental death 

rates for all ages within the GM regime [𝑥, 𝑥∗]. 

The relationship can be explicitly written as: 

𝑙𝑛 (𝑙𝑛 (
1

1−𝑞𝑥[𝑖]
) − 𝜆[𝑖])

⏞              
z

= 𝑙𝑛(ℎ[𝑖]) + 𝑙𝑛[(𝑒𝑔[𝑖]𝑥 − 1)/𝑔[𝑖]]⏞                    
𝐾0

+ 𝑔[𝑖]⏞
𝐾1

𝑥               (3) 

 

to estimate the region-specific GM parameters 𝜆[𝑖], ℎ[𝑖], 𝑔[𝑖], where the new 

constants 𝐾0 and 𝐾1 are defined for convenience, see Milevsky (2020). Global 

parameters 𝑥∗ and 𝜆∗ are estimated via regression through the equation:  
 

𝑙𝑛(ℎ[𝑖]) = 𝐿 + (−𝑥∗)𝑔[𝑖] +  𝜀𝑗 ,       (4) 
 

where 𝐿 = 𝑙𝑛𝜆∗. 

The GM mortality law implies that (log) mortality rates increase linearly and then 

converge to a constant mortality plateau, which is also known as the compensation 

law. This leads to a linear negative relationship between the initial natural mortality 

(intercept) 𝑙𝑛(ℎ[𝑖]) and MGR (slope) 𝑔[𝑖] as shown in Eq. (4).  

The next Section focuses on the computation of the L-RaG age starting from the 

GM equation, using local and global mortality rates as input. 

 

 

2.1 From GM mortality law to L-RaG age 

 

According to the work of Milevsky (2020), ξ(x,i) denote the longevity-risk-

adjusted global age for someone at the chronological age of x in region i, which may 

or may not correspond to his/her chronological age (x).  

The L-RaG refers to the concept of biological age, i.e., the age (number of years) 

a person seems to be, whose computation involves mapping from mortality rates to 

a specific age by inverting the GM mortality law. 
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For this reason, the L-RaG age is forced to satisfy the compensation law described 

in Eq. (1), but considering the Italian average version of the GM parameters. 

Formally, we have:  
 
ln[𝛬𝜉[𝑖] −  𝛬] = ln[𝐻] + 𝐺𝜉(𝑥, 𝑖),                     (5) 
 

where 𝛬𝜉[𝑖] 
 
is the longevity-risk-adjusted global hazard rate and 𝛬 ≥ 0,𝐻 > 0, 𝐺 ≥ 0 

represent the mean in Italy of 𝜆[𝑖], ℎ[𝑖], 𝑔[𝑖], respectively. 

The longevity-risk-adjusted global hazard rate is set equal to the THR:  

 

𝛬
𝜉
[𝑖] = 𝜇𝑥[𝑖].                     (6) 

 

Inverting the GM equation and solving by 𝜉(𝑥, 𝑖), the L-RaG age can be 

determined: 

𝜉(𝑥, 𝑖) =
𝑙𝑛[𝜆[𝑖]−𝛬+ℎ[𝑖]𝑒𝑔[𝑖]𝑥]−𝑙𝑛 [𝐻]

𝐺
 .       (7) 

 

The validity of 𝜉(𝑥, 𝑖) is tied to 𝜆𝑖 − 𝛬 + ℎ𝑖𝑒
𝑔[𝑖]𝑥 > 0. This fact is generally 

guaranteed because the GM model is applied to adult ages (35 and older). 

Eq. (7) is used to estimate the L-RaG age in the Italian region. The data and results 

are discussed in Section 3. 

 

 

3. Data and results 

 

We consider data from ISTAT mortality tables for Italian regions considering for 

two years (2011 and 2018) males and females separately. 

First of all, we extract the one-year decrement rate 𝑞𝑥[𝑖], then we estimate all the 

GM parameters as described in Section 2.  

The compensation law is assured for all subgroups and years analyzed for values 

of 𝑥∗ and 𝜆∗ equal to 95 and 0.06. The negative relationship between mortality growth 

rate and (log) initial mortality rate is shown in Figure 1.  

Figure 2 shows chronological ages versus the gap (difference) between 

chronological age and L-RaG age for females (a) and males (b) in each region 

considered.  
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Figura 1  Compensation law: females 2011-2018 (a, b) and males 2011-2018 (c, d). 

(a) 

 
 

(b) 

 
 

(c) 

 
 

(d) 
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Figure 2 – Relationship between chronological age (x) and the mean age gap (x-L-RaG) at 

regional level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in Figure 2, regardless the year considered, the age gap is lower for 

females, since chronological age increases (around 47 years the difference is almost 

0). This means that the estimation of L-Rag is closer to chronological age for 

females. For males instead, the gap is high even in old age and strongly influenced 

by the region.  

Bearing in mind that a positive gap means that people in the region considered 

seem younger than their effective age, Figure 3 focuses on the mean age gap at the 

regional level, divided into quantiles relatived to the adult category (ages 35-65). 
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Figure 3 – Mean age gap at regional level divided by quantiles for females (a) and males 

(b).  

 
(a) 

 
(b)  
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Figure 3 shows how the situation worsened on average from 2011 to 2018 for 

adults (females and males) in the Southern regions (quantiles are lower) marking a 

distinction between Southern and Northern Italy in terms of the difference between 

chronological age and L-RaG age.   

To investigate the age gap in terms of sentiment indicators, we relate the mean 

age gap (x-L-RaG) to healthy life expectancy and personal life satisfaction according 

to the BES database (ISTAT). We expect that, in the regions with positive health 

conditions (BES indicators at regional level greater than the Italian values) 

individuals should feel younger since they live better. Table 1 shows Pearson 

correlation coefficients between age gap and the indicators. 

Table 1 – Correlation coefficients between mean age gap and BES indicators. Signif. codes: 

p-value ≤ 0.001 (***); (**) 0.001<p-value≤ 0.01; (*) 0.01<p-value≤0.05; (·) 

0.05<p-value ≤ 0.1;(-) 0.1<p-value≤1. 

 Female Male  

 2011 2018 2011 2018 

Healthy life expectancy -0.13 (-) 0.63 (**) 0.39 (.) 0.51 (*) 

Personal life satisfaction -0.07 (-) 0.59 (**) 0.23 (-) 0.50 (*) 

 

L-RaG is related to sentiment indicators and especially to healthy life expectancy 

(higher and significant correlations). For this reason, we report only graphs showing 

regional mean age gaps associated with the difference between the values of healthy 

life indicator at the regional level and the Italian mean (Figure 4). Node colors refer 

to the pertinent macro-area: north-west (orange), north-east (light orange), centre 

(green), south (light blue) and islands (violet). 
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Figure 4 – Sentiment indicator and mean age gap at regional level. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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According to Figure 4, regions belonging to the first quadrant represent the group 

associated with the best living conditions in terms of both perceived age and future 

perspective of healthy life expectancy. In contrast, regions in the third quadrant 

represent the group associated with the worst living conditions.  

The situation for females changed from 2011 to 2018. In fact, the most recent 

year is characterized by a clear separation of regions into the first and third quadrants. 

For males, the two years seem more similar. 

 

 

4. Conclusion 

 

Mortality is a complex phenomenon affected by many factors such as wellness 

and healthy lifestyle, geographical area, or sex. However, almost all parametric 

mortality models assume the mortality rate to be function only of chronological age, 

neglecting the influence of qualitative, non-measurable factors. Based on these 

considerations, we hypothesize a relationship between mortality and well-being.  

Assuming the mortality described by a GM model, we compute the L-RaG age 

for males and females among Italian regions for the years 2011 and 2018 and the gap 

between L-RaG and chronological age. Our empirical findings show that the age 

gap, especially for females, is highly correlated with a healthy life expectancy, 

supporting our assumption that sentiment indicators based on surveys may be 

reflected in indicators based on observed data. Moreover, a joint analysis of the age 

gap and healthy life expectancy allows Italian regions to be ranked based on health 

conditions.   
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SUMMARY 

 

Longevity-risk-adjusted global age 

as a measure of well-being 

 
In this work, we show how the difference between chronological and biological age can 

be investigated by sentiment indicators constructed using survey data (healthy life 

expectancy and personal life satisfaction). We invert the GM mortality model to compute 

longevity-risk-adjusted global age, detecting how an objective indicator (i.e., L-RaG age) 

mimics a sentiment indicator, thereby implying that human feeling relies on different lifestyle 

conditions. 
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